Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai

  • 18/11/2021
  • 40 Câu hỏi
  • 116 Lượt xem

Trắc Nghiệm Hay giới thiệu đến các bạn Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai. Tài liệu bao gồm 40 câu hỏi kèm đáp án thuộc danh mục Thư viện đề thi lớp 12. Tài liệu này sẽ giúp các bạn ôn tập, củng cố lại kiến thức để chuẩn bị cho các kỳ thi sắp tới. Mời các bạn tham khảo!

3.3 14 Đánh giá
Cập nhật ngày

18/11/2021

Thời gian

60 Phút

Tham gia thi

0 Lần thi

Câu 1: Cho hình (H) giới hạn bởi đường cong \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:

A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)

B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)

C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)

D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)

Câu 2: Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?

A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).  

B.  \(I = 2004\int\limits_0^\pi  {\sqrt {1 - \cos 2x} } \,dx\).

C. \(I = 4008\sqrt 2 \).

D. \(I = 2004\sqrt 2 \int\limits_0^\pi  {\sin x\,dx} \).

Câu 3: Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).

A. \(4\cos x + \ln x + C\). 

B. \(4\cos x + \dfrac{1}{x} + C\).

C. \(4\sin x - \dfrac{1}{x} + C\).

D. \(4\sin x + \dfrac{1}{x} + C\).

Câu 4: Mệnh đề nào sau đây là sai ?

A. \(\int\limits_a^c {f(x)\,dx = \int\limits_a^b {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).

B. \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx - \int\limits_b^c {f(x)\,dx} } } \).

C. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f(x)\,dx + \int\limits_a^c {f(x)\,dx} } } \).

D. \(\int\limits_a^b {cf(x)\,dx =  - c\int\limits_b^a {f(x)\,dx} } \)

Câu 5:  Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:

A. \( - {\sin ^4}x + C\).

B. \(\dfrac{1}{4}{\sin ^4}x + C\).

C. \( - \dfrac{1}{4}{\sin ^4}x + C\).

D. \({\sin ^4}x + C\).

Câu 7: Gọi \(\int {{{2009}^x}\,dx}  = F(x) + C\) . Khi đó F(x) là hàm số:

A. \({2009^x}\ln 2009\).

B. \(\dfrac{{{{2009}^x}}}{{\ln 2009}}\).

C. \({2009^x} + 1\).

D. \({2009^x}\).

Câu 8: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt  \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:

A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)

B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)

C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)

D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)

Câu 11: Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x}  + C\) thì f(x) bằng

A. \({e^x} + 2\sin x\). 

B. \({e^x} + \sin 2x\).

C. \({e^x} + {\cos ^2}x\).        

D. \({e^x} - 2\sin x\).

Câu 12: Trong các khẳng định sau, khẳng định nào sai ?

A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)

B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)

C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )

D. \(F(x) = {x^2}\)  là một nguyên hàm của f(x) = 2x.

Câu 13: Tìm họ các nguyên hàm của hàm số f(x) = 2sinx.

A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\)

B. \(\int {2\sin x\,dx = 2\cos x} + C\)

C. \(\int {2\sin x\,dx = \sin 2x} + C\)

D. \(\int {2\sin x\,dx = - 2\cos x} + C\)

Câu 15: Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \) .

A. \(I = {e^{\dfrac{\pi }{2}}} + 2\)

B. \(I = {e^{\dfrac{\pi }{2}}} + 1\)

C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)

D. \(I = {e^{\dfrac{\pi }{2}}}\)

Câu 17: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:

A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).   

B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).

C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).

D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)

Câu 18: Trong các mệnh đề sau, mệnh đề nào đúng ?

A. Hàm số \(y = \dfrac{1}{x}\) có nguyên hàm trên \(( - \infty ; + \infty )\).

B. \(3{x^2}\) là một nguyên hàm của \({x^3}\) trên \(( - \infty ; + \infty )\).

C. Hàm số \(y = |x|\) có nguyên hàm trên \(( - \infty ; + \infty )\).

D. \(\dfrac{1}{x} + C\) là họ nguyên hàm của lnx trên \((0; + \infty )\).

Câu 19: Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?

A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).

B. \({2^{\sqrt x }} + C\).

C. \({2^{\sqrt x  + 1}}\). 

D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).

Câu 20: Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:

A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)

B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).

C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).

D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).

Câu 21: Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được:

A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \). 

B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).

C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \). 

D. 0

Câu 22: Tính nguyên hàm \(\int {{x^2}\sqrt {{x^3} + 5} } \,dx\) ta được kết quả là :

A. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).

B. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).

C. \(2{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).

D. \(2{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).

Câu 23: Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:

A. \(\cot x - 2\tan x + C\).

B. \( - \cot x + 2\tan x + C\).

C. \(\cot x + 2\tan x + C\).

D. \( - \cot x - 2\tan x + C\) 

Câu 24: Hàm số \(f(x) = x\sqrt {x + 1} \) có một nguyên hàm là F(x). Nếu F(0) = 2 thì F(3) bằng bao nhiêu ?

A. \(\dfrac{{146}}{{15}}\)

B. \(\dfrac{{116}}{{15}}\)  

C. \(\dfrac{{886}}{{105}}\)

D. \(\dfrac{{105}}{{886}}\).

Câu 25: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).

A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).

B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).

C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\). 

D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).

Câu 29: Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là

A. tam giác vuông tại \(A\) 

B. tam giác cân tại \(A\).

C. tam giác vuông cân tại \(A\).

D. Tam giác đều.

Câu 30: Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng

A. \(\sqrt 6 \).

B. \(\dfrac{{\sqrt 6 }}{3}\). 

C. \(\dfrac{{\sqrt 6 }}{2}\).

D. \(\dfrac{1}{2}\).

Câu 33: Phương trình nào sau đây không phải là phương trình mặt cầu ?

A. \({x^2} + {y^2} + {z^2} - 2x = 0.\)

B. \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1.\)

C. \({x^2} + {y^2} + {z^2} + 2x - 2y + 1 = 0.\)

D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 1 - 4x.\)

Câu 35: Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) có tâm là:

A. \(I\left( {1; - 2;0} \right).\)

B. \(I\left( { - 1;2;0} \right).\) 

C. \(I\left( {1;2;0} \right).\)

D. \(I\left( { - 1; - 2;0} \right).\)

Câu 37: Cho vectơ  \(\overrightarrow a  = \left( {1;3;4} \right)\), tìm vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow a \)

A. \(\overrightarrow b  = \left( { - 2; - 6; - 8} \right).\)

B. \(\overrightarrow b  = \left( { - 2; - 6;8} \right).\)

C. \(\overrightarrow b  = \left( { - 2;6;8} \right).\) 

D. \(\overrightarrow b  = \left( {2; - 6; - 8} \right).\)

Câu 40: Cho 3 điểm \(M(0;1;0),N(0;1; - 4),P(2;4;0)\). Nếu \(MNPQ\) là hình bình hành thì tọa độ của điểm \(Q\) là

A. \(Q = \left( { - 2; - 3;4} \right)\)

B. \(Q = \left( {2;3;4} \right)\) 

C. \(Q = \left( {3;4;2} \right)\)

D. \(Q = \left( { - 2; - 3; - 4} \right)\)

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh