Câu hỏi: Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
A. \(\sqrt 6 \).
B. \(\dfrac{{\sqrt 6 }}{3}\).
C. \(\dfrac{{\sqrt 6 }}{2}\).
D. \(\dfrac{1}{2}\).
Câu 1: Trong không gian \(Oxyz\) cho ba điểm \(A(2;5;3),B(3;7;4),C(x;y;6)\). Giá trị của \(x,y\) để ba điểm \(A,B,C\) thẳng hàng là
A. x = 5;y = 11
B. x = - 5;y = 11
C. x = - 11;y = - 5
D. x = 11;y = 5
18/11/2021 2 Lượt xem
Câu 2: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem
Câu 3: Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?
A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).
B. \({2^{\sqrt x }} + C\).
C. \({2^{\sqrt x + 1}}\).
D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).
18/11/2021 4 Lượt xem
Câu 4: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(u = {x^2} - 2x + 3\) , trục Ox và đường thẳng x = -1 , x =2 bằng :
A. \(\dfrac{1}{3}\)
B. 17
C. 7
D. 9
18/11/2021 1 Lượt xem
Câu 5: Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:
A. \(\cot x - 2\tan x + C\).
B. \( - \cot x + 2\tan x + C\).
C. \(\cot x + 2\tan x + C\).
D. \( - \cot x - 2\tan x + C\)
18/11/2021 1 Lượt xem
Câu 6: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
18/11/2021 2 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 585
- 0
- 40
-
14 người đang thi
- 614
- 13
- 40
-
23 người đang thi
- 544
- 3
- 30
-
97 người đang thi
- 522
- 3
- 30
-
50 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận