Câu hỏi: Cho hình (H) giới hạn bởi đường cong \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)
B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)
C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)
D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)
Câu 1: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:
A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).
B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).
C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).
D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)
18/11/2021 1 Lượt xem
Câu 2: Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x} + C\) thì f(x) bằng
A. \({e^x} + 2\sin x\).
B. \({e^x} + \sin 2x\).
C. \({e^x} + {\cos ^2}x\).
D. \({e^x} - 2\sin x\).
18/11/2021 2 Lượt xem
Câu 3: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem
Câu 4: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(u = {x^2} - 2x + 3\) , trục Ox và đường thẳng x = -1 , x =2 bằng :
A. \(\dfrac{1}{3}\)
B. 17
C. 7
D. 9
18/11/2021 1 Lượt xem
Câu 5: Biết rằng hàm số \(f(x) = {\left( {6x + 1} \right)^2}\) có một nguyên hàm \(F(x) = a{x^3} + b{x^2} + cx + d\) thỏa mãn điều kiện F(-1) = 20. Tính tổng a + b + c + d.
A. 46
B. 44
C. 36
D. 54
18/11/2021 2 Lượt xem
Câu 6: Hàm số \(f(x) = x\sqrt {x + 1} \) có một nguyên hàm là F(x). Nếu F(0) = 2 thì F(3) bằng bao nhiêu ?
A. \(\dfrac{{146}}{{15}}\)
B. \(\dfrac{{116}}{{15}}\)
C. \(\dfrac{{886}}{{105}}\)
D. \(\dfrac{{105}}{{886}}\).
18/11/2021 1 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 585
- 0
- 40
-
28 người đang thi
- 614
- 13
- 40
-
33 người đang thi
- 544
- 3
- 30
-
23 người đang thi
- 522
- 3
- 30
-
75 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận