Câu hỏi: Gọi \(\int {{{2009}^x}\,dx} = F(x) + C\) . Khi đó F(x) là hàm số:
A. \({2009^x}\ln 2009\).
B. \(\dfrac{{{{2009}^x}}}{{\ln 2009}}\).
C. \({2009^x} + 1\).
D. \({2009^x}\).
Câu 1: Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được:
A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \).
B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).
C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \).
D. 0
18/11/2021 3 Lượt xem
Câu 2: Trong không gian cho hai điểm \(A\left( { - 1;2;3} \right),\,B\left( {0;1;1} \right)\), độ dài đoạn \(AB\) bằng
A. \(\sqrt 6 .\)
B. \(\sqrt 8 .\)
C. \(\sqrt {10} .\)
D. \(\sqrt {12} .\)
18/11/2021 1 Lượt xem
Câu 3: Cho \(\overrightarrow u = \left( {2; - 1;1} \right),\overrightarrow v = \left( {m;3; - 1} \right),\overrightarrow {\rm{w}} = \left( {1;2;1} \right)\). Với giá trị nào của m thì ba vectơ trên đồng phẳng
A. \(\dfrac{3}{8}\).
B. \( - \dfrac{3}{8}\).
C. \(\dfrac{8}{3}\).
D. \( - \dfrac{8}{3}\).
18/11/2021 1 Lượt xem
Câu 4: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
18/11/2021 2 Lượt xem
Câu 5: Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)
B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).
C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).
D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).
18/11/2021 1 Lượt xem
Câu 6: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 594
- 0
- 40
-
52 người đang thi
- 622
- 13
- 40
-
69 người đang thi
- 553
- 3
- 30
-
70 người đang thi
- 531
- 3
- 30
-
91 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận