Câu hỏi: Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó bằng
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
Câu 1: Biết rằng hàm số \(f(x) = {\left( {6x + 1} \right)^2}\) có một nguyên hàm \(F(x) = a{x^3} + b{x^2} + cx + d\) thỏa mãn điều kiện F(-1) = 20. Tính tổng a + b + c + d.
A. 46
B. 44
C. 36
D. 54
18/11/2021 2 Lượt xem
Câu 2: Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được:
A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \).
B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).
C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \).
D. 0
18/11/2021 3 Lượt xem
Câu 3: Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
A. \( - {\sin ^4}x + C\).
B. \(\dfrac{1}{4}{\sin ^4}x + C\).
C. \( - \dfrac{1}{4}{\sin ^4}x + C\).
D. \({\sin ^4}x + C\).
18/11/2021 1 Lượt xem
Câu 4: Cho hình (H) giới hạn bởi đường cong \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)
B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)
C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)
D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)
18/11/2021 1 Lượt xem
Câu 5: Trong không gian \(Oxyz\) cho ba điểm \(A(2;5;3),B(3;7;4),C(x;y;6)\). Giá trị của \(x,y\) để ba điểm \(A,B,C\) thẳng hàng là
A. x = 5;y = 11
B. x = - 5;y = 11
C. x = - 11;y = - 5
D. x = 11;y = 5
18/11/2021 2 Lượt xem
Câu 6: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 492
- 0
- 40
-
52 người đang thi
- 527
- 13
- 40
-
46 người đang thi
- 452
- 3
- 30
-
97 người đang thi
- 429
- 3
- 30
-
73 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận