Câu hỏi: Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó bằng
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
Câu 1: Trong các mệnh đề sau, mệnh đề nào đúng ?
A. Hàm số \(y = \dfrac{1}{x}\) có nguyên hàm trên \(( - \infty ; + \infty )\).
B. \(3{x^2}\) là một nguyên hàm của \({x^3}\) trên \(( - \infty ; + \infty )\).
C. Hàm số \(y = |x|\) có nguyên hàm trên \(( - \infty ; + \infty )\).
D. \(\dfrac{1}{x} + C\) là họ nguyên hàm của lnx trên \((0; + \infty )\).
18/11/2021 2 Lượt xem
Câu 2: Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \) .
A. \(I = {e^{\dfrac{\pi }{2}}} + 2\)
B. \(I = {e^{\dfrac{\pi }{2}}} + 1\)
C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)
D. \(I = {e^{\dfrac{\pi }{2}}}\)
18/11/2021 2 Lượt xem
Câu 3: Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
18/11/2021 1 Lượt xem
Câu 4: Trong các khẳng định sau, khẳng định nào sai ?
A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)
B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)
C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )
D. \(F(x) = {x^2}\) là một nguyên hàm của f(x) = 2x.
18/11/2021 1 Lượt xem
Câu 5: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem
Câu 6: Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).
B. \(I = 2004\int\limits_0^\pi {\sqrt {1 - \cos 2x} } \,dx\).
C. \(I = 4008\sqrt 2 \).
D. \(I = 2004\sqrt 2 \int\limits_0^\pi {\sin x\,dx} \).
18/11/2021 1 Lượt xem
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 665
- 0
- 40
-
66 người đang thi
- 711
- 13
- 40
-
32 người đang thi
- 633
- 6
- 30
-
11 người đang thi
- 607
- 7
- 30
-
66 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận