Câu hỏi: Trong các khẳng định sau, khẳng định nào sai ?
A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)
B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)
C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )
D. \(F(x) = {x^2}\) là một nguyên hàm của f(x) = 2x.
Câu 1: Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
A. \( - {\sin ^4}x + C\).
B. \(\dfrac{1}{4}{\sin ^4}x + C\).
C. \( - \dfrac{1}{4}{\sin ^4}x + C\).
D. \({\sin ^4}x + C\).
18/11/2021 1 Lượt xem
Câu 2: Cho \(\overrightarrow u = \left( {2; - 1;1} \right),\overrightarrow v = \left( {m;3; - 1} \right),\overrightarrow {\rm{w}} = \left( {1;2;1} \right)\). Với giá trị nào của m thì ba vectơ trên đồng phẳng
A. \(\dfrac{3}{8}\).
B. \( - \dfrac{3}{8}\).
C. \(\dfrac{8}{3}\).
D. \( - \dfrac{8}{3}\).
18/11/2021 1 Lượt xem
Câu 3: Mệnh đề nào sau đây là sai ?
A. \(\int\limits_a^c {f(x)\,dx = \int\limits_a^b {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).
B. \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx - \int\limits_b^c {f(x)\,dx} } } \).
C. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f(x)\,dx + \int\limits_a^c {f(x)\,dx} } } \).
D. \(\int\limits_a^b {cf(x)\,dx = - c\int\limits_b^a {f(x)\,dx} } \)
18/11/2021 1 Lượt xem
Câu 4: Tính nguyên hàm \(\int {{x^2}\sqrt {{x^3} + 5} } \,dx\) ta được kết quả là :
A. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
B. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
C. \(2{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
D. \(2{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
18/11/2021 1 Lượt xem
Câu 5: Trong không gian cho hai điểm \(A\left( { - 1;2;3} \right),\,B\left( {0;1;1} \right)\), độ dài đoạn \(AB\) bằng
A. \(\sqrt 6 .\)
B. \(\sqrt 8 .\)
C. \(\sqrt {10} .\)
D. \(\sqrt {12} .\)
18/11/2021 1 Lượt xem
Câu 6: Biết rằng hàm số \(f(x) = {\left( {6x + 1} \right)^2}\) có một nguyên hàm \(F(x) = a{x^3} + b{x^2} + cx + d\) thỏa mãn điều kiện F(-1) = 20. Tính tổng a + b + c + d.
A. 46
B. 44
C. 36
D. 54
18/11/2021 2 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 490
- 0
- 40
-
31 người đang thi
- 527
- 13
- 40
-
50 người đang thi
- 451
- 3
- 30
-
67 người đang thi
- 427
- 3
- 30
-
85 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận