Câu hỏi: Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) có tâm là:
A. \(I\left( {1; - 2;0} \right).\)
B. \(I\left( { - 1;2;0} \right).\)
C. \(I\left( {1;2;0} \right).\)
D. \(I\left( { - 1; - 2;0} \right).\)
Câu 1: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
18/11/2021 2 Lượt xem
Câu 2: Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:
A. \(\cot x - 2\tan x + C\).
B. \( - \cot x + 2\tan x + C\).
C. \(\cot x + 2\tan x + C\).
D. \( - \cot x - 2\tan x + C\)
18/11/2021 1 Lượt xem
Câu 3: Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó bằng
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
18/11/2021 1 Lượt xem
Câu 4: Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x} + C\) thì f(x) bằng
A. \({e^x} + 2\sin x\).
B. \({e^x} + \sin 2x\).
C. \({e^x} + {\cos ^2}x\).
D. \({e^x} - 2\sin x\).
18/11/2021 2 Lượt xem
Câu 5: Tìm họ các nguyên hàm của hàm số f(x) = 2sinx.
A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\)
B. \(\int {2\sin x\,dx = 2\cos x} + C\)
C. \(\int {2\sin x\,dx = \sin 2x} + C\)
D. \(\int {2\sin x\,dx = - 2\cos x} + C\)
18/11/2021 2 Lượt xem
Câu 6: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 490
- 0
- 40
-
27 người đang thi
- 527
- 13
- 40
-
32 người đang thi
- 451
- 3
- 30
-
36 người đang thi
- 427
- 3
- 30
-
47 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận