Câu hỏi: Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).
B. \(I = 2004\int\limits_0^\pi {\sqrt {1 - \cos 2x} } \,dx\).
C. \(I = 4008\sqrt 2 \).
D. \(I = 2004\sqrt 2 \int\limits_0^\pi {\sin x\,dx} \).
Câu 1: Cho \(\left| {\overrightarrow a } \right| = 2;\,\left| {\overrightarrow b } \right| = 5,\) góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng \(\frac{{2\pi }}{3}\) , \(\overrightarrow u = k\overrightarrow a - \overrightarrow b ;\,\overrightarrow v = \overrightarrow a + 2\overrightarrow b .\) Để \(\overrightarrow u \) vuông góc với \(\overrightarrow v \) thì k bằng
A. \( - \dfrac{6}{{45}}.\)
B. \(\dfrac{{45}}{6}.\)
C. \(\dfrac{6}{{45}}.\)
D. \( - \dfrac{{45}}{6}.\)
18/11/2021 2 Lượt xem
Câu 2: Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là
A. tam giác vuông tại \(A\)
B. tam giác cân tại \(A\).
C. tam giác vuông cân tại \(A\).
D. Tam giác đều.
18/11/2021 1 Lượt xem
Câu 3: Cho vectơ \(\overrightarrow a = \left( {1;3;4} \right)\), tìm vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow a \)
A. \(\overrightarrow b = \left( { - 2; - 6; - 8} \right).\)
B. \(\overrightarrow b = \left( { - 2; - 6;8} \right).\)
C. \(\overrightarrow b = \left( { - 2;6;8} \right).\)
D. \(\overrightarrow b = \left( {2; - 6; - 8} \right).\)
18/11/2021 1 Lượt xem
Câu 4: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:
A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).
B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).
C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).
D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)
18/11/2021 1 Lượt xem
Câu 5: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(u = {x^2} - 2x + 3\) , trục Ox và đường thẳng x = -1 , x =2 bằng :
A. \(\dfrac{1}{3}\)
B. 17
C. 7
D. 9
18/11/2021 1 Lượt xem
Câu 6: Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \) .
A. \(I = {e^{\dfrac{\pi }{2}}} + 2\)
B. \(I = {e^{\dfrac{\pi }{2}}} + 1\)
C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)
D. \(I = {e^{\dfrac{\pi }{2}}}\)
18/11/2021 2 Lượt xem
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 634
- 0
- 40
-
28 người đang thi
- 676
- 13
- 40
-
41 người đang thi
- 594
- 6
- 30
-
55 người đang thi
- 573
- 7
- 30
-
24 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận