Câu hỏi: Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)
B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).
C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).
D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).
Câu 1: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem
Câu 2: Biết rằng hàm số \(f(x) = {\left( {6x + 1} \right)^2}\) có một nguyên hàm \(F(x) = a{x^3} + b{x^2} + cx + d\) thỏa mãn điều kiện F(-1) = 20. Tính tổng a + b + c + d.
A. 46
B. 44
C. 36
D. 54
18/11/2021 2 Lượt xem
Câu 3: Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).
B. \(I = 2004\int\limits_0^\pi {\sqrt {1 - \cos 2x} } \,dx\).
C. \(I = 4008\sqrt 2 \).
D. \(I = 2004\sqrt 2 \int\limits_0^\pi {\sin x\,dx} \).
18/11/2021 1 Lượt xem
Câu 4: Tìm họ các nguyên hàm của hàm số f(x) = 2sinx.
A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\)
B. \(\int {2\sin x\,dx = 2\cos x} + C\)
C. \(\int {2\sin x\,dx = \sin 2x} + C\)
D. \(\int {2\sin x\,dx = - 2\cos x} + C\)
18/11/2021 2 Lượt xem
Câu 5: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
18/11/2021 2 Lượt xem
Câu 6: Tính nguyên hàm \(\int {{x^2}\sqrt {{x^3} + 5} } \,dx\) ta được kết quả là :
A. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
B. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
C. \(2{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
D. \(2{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
18/11/2021 1 Lượt xem
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 644
- 0
- 40
-
39 người đang thi
- 687
- 13
- 40
-
96 người đang thi
- 605
- 6
- 30
-
70 người đang thi
- 587
- 7
- 30
-
13 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận