Câu hỏi: Biết rằng hàm số \(f(x) = {\left( {6x + 1} \right)^2}\) có một nguyên hàm \(F(x) = a{x^3} + b{x^2} + cx + d\) thỏa mãn điều kiện F(-1) = 20. Tính tổng a + b + c + d.

222 Lượt xem
18/11/2021
3.7 17 Đánh giá

A. 46

B. 44

C. 36

D. 54

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) có tâm là:

A. \(I\left( {1; - 2;0} \right).\)

B. \(I\left( { - 1;2;0} \right).\) 

C. \(I\left( {1;2;0} \right).\)

D. \(I\left( { - 1; - 2;0} \right).\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 2: Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:

A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)

B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).

C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).

D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4: Cho hình (H) giới hạn bởi đường cong \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:

A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)

B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)

C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)

D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:

A. \(\cot x - 2\tan x + C\).

B. \( - \cot x + 2\tan x + C\).

C. \(\cot x + 2\tan x + C\).

D. \( - \cot x - 2\tan x + C\) 

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh