Câu hỏi: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
Câu 1: Mệnh đề nào sau đây là sai ?
A. \(\int\limits_a^c {f(x)\,dx = \int\limits_a^b {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).
B. \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx - \int\limits_b^c {f(x)\,dx} } } \).
C. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f(x)\,dx + \int\limits_a^c {f(x)\,dx} } } \).
D. \(\int\limits_a^b {cf(x)\,dx = - c\int\limits_b^a {f(x)\,dx} } \)
18/11/2021 1 Lượt xem
Câu 2: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:
A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).
B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).
C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).
D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)
18/11/2021 1 Lượt xem
Câu 3: Cho vectơ \(\overrightarrow a = \left( {1;3;4} \right)\), tìm vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow a \)
A. \(\overrightarrow b = \left( { - 2; - 6; - 8} \right).\)
B. \(\overrightarrow b = \left( { - 2; - 6;8} \right).\)
C. \(\overrightarrow b = \left( { - 2;6;8} \right).\)
D. \(\overrightarrow b = \left( {2; - 6; - 8} \right).\)
18/11/2021 1 Lượt xem
Câu 4: Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:
A. \(\cot x - 2\tan x + C\).
B. \( - \cot x + 2\tan x + C\).
C. \(\cot x + 2\tan x + C\).
D. \( - \cot x - 2\tan x + C\)
18/11/2021 1 Lượt xem
Câu 5: Hàm số \(f(x) = x\sqrt {x + 1} \) có một nguyên hàm là F(x). Nếu F(0) = 2 thì F(3) bằng bao nhiêu ?
A. \(\dfrac{{146}}{{15}}\)
B. \(\dfrac{{116}}{{15}}\)
C. \(\dfrac{{886}}{{105}}\)
D. \(\dfrac{{105}}{{886}}\).
18/11/2021 1 Lượt xem
Câu 6: Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)
B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).
C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).
D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).
18/11/2021 1 Lượt xem
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 644
- 0
- 40
-
66 người đang thi
- 687
- 13
- 40
-
16 người đang thi
- 605
- 6
- 30
-
31 người đang thi
- 587
- 7
- 30
-
68 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận