Câu hỏi: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:

257 Lượt xem
18/11/2021
3.5 15 Đánh giá

A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).   

B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).

C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).

D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).

A. \(4\cos x + \ln x + C\). 

B. \(4\cos x + \dfrac{1}{x} + C\).

C. \(4\sin x - \dfrac{1}{x} + C\).

D. \(4\sin x + \dfrac{1}{x} + C\).

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2: Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là

A. tam giác vuông tại \(A\) 

B. tam giác cân tại \(A\).

C. tam giác vuông cân tại \(A\).

D. Tam giác đều.

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).

A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).

B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).

C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\). 

D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 4: Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?

A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).

B. \({2^{\sqrt x }} + C\).

C. \({2^{\sqrt x  + 1}}\). 

D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).

Xem đáp án

18/11/2021 4 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh