Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 2

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 2

  • 30/08/2021
  • 25 Câu hỏi
  • 620 Lượt xem

Trắc Nghiệm Hay giới thiệu đến các bạn Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 2. Tài liệu bao gồm 25 câu hỏi kèm đáp án thuộc danh mục Môn đại cương. Tài liệu này sẽ giúp các bạn ôn tập, củng cố lại kiến thức để chuẩn bị cho các kỳ thi sắp tới. Mời các bạn tham khảo!

3.5 8 Đánh giá
Cập nhật ngày

21/10/2021

Thời gian

30 Phút

Tham gia thi

23 Lần thi

Câu 2: Đạo hàm cấp n của hàm eax là:

A. \({a^n}.{e^{ax}}\)

B. \({a^n-1}.{e^{ax}}\)

C. \({a^n}.{e^{x}}\)

D. Kết quả khác

Câu 4: Tìm tiệm cận của hàm số: \(f(x) = \frac{x}{{1 + {e^{\frac{1}{x}}}}}\)

A. \(y = x - \frac{1}{4}\)

B. \(y = \frac{x}{2} - \frac{1}{2}\)

C. \(y = \frac{x}{2} - \frac{1}{4}\)

D. \(y = \frac{x}{2} + \frac{1}{4}\)

Câu 6: Đạo hàm cấp n của hàm ln x là:

A. \(\frac{{(n - 1)!}}{{{x^n}}}\)

B. Kết quả khác

C. \({( - 1)^{n - 1}}.\frac{{(n - 1)!}}{{{x^n}}}\)

D. \({a^{n - 1}}.{e^{ax}}\)

Câu 10: Nếu f(x) là hàm lẻ thì:

A. \(\int\limits_{ - a}^a {f(x)dx = - } \int\limits_0^a {f(x)dx} \)

B. \(\int\limits_{ - a}^a {f(x)dx = 2} \int\limits_0^a {f(x)dx} \)

C. \(\int\limits_{ - a}^a {f(x)dx = } \int\limits_0^a {f(x)dx} \)

D. \(\int\limits_{ - a}^a {f(x)dx = } 0\)

Câu 12: Tích phân \(\int\limits_a^b {f(x)dx} \) bằng với tích phân

A. \(\int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} ;c \in R\)

B. \(\int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} ;a \le c \le b\)

C. \(\int\limits_c^a {f(x)dx} + \int\limits_b^c {f(x)dx} ;a \le c \le b\)

D. \(\int\limits_a^b {f(t)dx}\)

Câu 13:  Tính tích phân suy rộng \(\int\limits_2^{ + \infty } {\frac{1}{{(x - 1)(x + 2)(x + 3)}}} dx\)

A. \( - \frac{1}{4}\ln 5 + \frac{2}{3}\ln 2\)

B. \( \frac{1}{4}\ln 5 + \frac{2}{3}\ln 2\)

C. \( - \frac{1}{4}\ln 5\)

D. \( \frac{2}{3}\ln 2\)

Câu 14: Nếu f(x) là hàm chẵn thì: 

A. \(\int\limits_{ - a}^a {f(x)dx = 2\int\limits_0^a {f(x)dx} } \)

B. \(\int\limits_{ - a}^a {f(x)dx = -\int\limits_0^a {f(x)dx} } \)

C. \(\int\limits_{ - a}^a {f(x)dx = \int\limits_0^a {f(x)dx} } \)

D. \(\int\limits_{ - a}^a {f(x)dx = 2\int\limits_{ - a/2}^{a/2} {f(x)dx} } \)

Câu 15:  Tính tích phân suy rộng \(\int\limits_1^{ + \infty } {\frac{1}{{{{(x + 1)}^5}}}} dx\)

A. \(\frac{1}{5}\)

B. \(\frac{1}{64}\)

C. \(\frac{1}{8}\)

D. \(\infty\)

Câu 16: Tính thể tích tròn xoay do \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) quay quanh Oy 

A. \(\frac{1}{3}\pi b{a^2}\)

B. \(\frac{2}{3}\pi b{a^2}\)

C. \(\frac{4}{3}\pi b{a^2}\)

D. \(\pi b{a^2}\)

Câu 17: Cho dãy vô hạn các số thực \({u_1},{u_2},....{u_n},....\) . Phát biểu nào sau đây là đúng nhất.

A. \({u_1} + {u_2} + ... + {u_n} + ...\)  được gọi là một dãy số 

B.  \(\sum\limits_{i = 1}^n {{u_i}} \) được gọi là một chuỗi số

C. \({u_1} + {u_2} + ... + {u_n} + ...\)  được gọi là một chuỗi số 

D. \(u_1^2,u_2^2,...u_n^2,...\)  được gọi là một chuỗi số dương

Câu 20: Mệnh đề nào sau đây đúng:

A. \((\forall x \in \left[ {a,b} \right])f(x) < g(x) \Rightarrow \int\limits_a^b {f(x)dx} > \int\limits_a^b {g(x)dx} \)

B. \((\forall x \in \left[ {a,b} \right])f(x) \le g(x) \Rightarrow \int\limits_a^b {f(x)dx} \le \int\limits_a^b {g(x)dx} \)

C. \((\forall x \in \left[ {a,b} \right])f(x) \le g(x) \Rightarrow \int\limits_a^b {f(x)g(x)dx} \le \int\limits_a^b {g(x)dx} \)

D. \(f(x) \le g(x) \Rightarrow \int\limits_a^b {g(x)dx} \le \int\limits_a^b {g(x)dx} \)

Câu 21: Nếu f(x) là hàm tuần hoàn với chu kì T thì:

A. \(\int\limits_a^{a + T} {f(x)dx = - \int\limits_0^a {f(x)dx} } \)

B. \(\int\limits_a^{a + T} {f(x)dx = \int\limits_0^a {f(x)dx} } \)

C. \(\int\limits_a^{a + T} {f(x)dx = 0} \)

D. \(\int\limits_a^{a + T} {f(x)dx = - \int\limits_T^a {f(x)dx} } \)

Câu 22: Tính tích phân suy rộng \(\int\limits_3^{ + \infty } {\frac{1}{{(x + 1)(x - 2)}}dx} \)

A. \(\frac{2}{3}\ln 2\)

B. \(\frac{3}{2}\ln 2\)

C. \(-\frac{2}{3}\ln 2\)

D. \(ln2\)

Câu 23: Tính tích phân \(\int\limits_0^{\ln 3} {\frac{{dx}}{{\sqrt {{e^x} + 1} }}} \)

A. 0

B. \(\ln \frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}\)

C. \(\ln \frac{{\sqrt 2 + 1}}{{3}}\)

D. \(\ln \frac{{\sqrt 2 + 1}}{{3(\sqrt 2 - 1)}}\)

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án

Chủ đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án Xem thêm...

Thông tin thêm
  • 23 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên