Câu hỏi: Tìm tiệm cận của hàm số: \(f(x) = \frac{x}{{1 + {e^{\frac{1}{x}}}}}\)

201 Lượt xem
30/08/2021
3.5 6 Đánh giá

A. \(y = x - \frac{1}{4}\)

B. \(y = \frac{x}{2} - \frac{1}{2}\)

C. \(y = \frac{x}{2} - \frac{1}{4}\)

D. \(y = \frac{x}{2} + \frac{1}{4}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tính thể tích tròn xoay do \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) quay quanh Oy 

A. \(\frac{1}{3}\pi b{a^2}\)

B. \(\frac{2}{3}\pi b{a^2}\)

C. \(\frac{4}{3}\pi b{a^2}\)

D. \(\pi b{a^2}\)

Xem đáp án

30/08/2021 1 Lượt xem

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Tích phân \(\int\limits_a^b {f(x)dx} \) bằng với tích phân

A. \(\int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} ;c \in R\)

B. \(\int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} ;a \le c \le b\)

C. \(\int\limits_c^a {f(x)dx} + \int\limits_b^c {f(x)dx} ;a \le c \le b\)

D. \(\int\limits_a^b {f(t)dx}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5:  Tính tích phân suy rộng \(\int\limits_1^{ + \infty } {\frac{1}{{{{(x + 1)}^5}}}} dx\)

A. \(\frac{1}{5}\)

B. \(\frac{1}{64}\)

C. \(\frac{1}{8}\)

D. \(\infty\)

Xem đáp án

30/08/2021 1 Lượt xem

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 2
Thông tin thêm
  • 23 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên