Trắc Nghiệm Hay giới thiệu đến các bạn Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 2. Tài liệu bao gồm 30 câu hỏi kèm đáp án thuộc danh mục Kinh tế thương mại. Tài liệu này sẽ giúp các bạn ôn tập, củng cố lại kiến thức để chuẩn bị cho các kỳ thi sắp tới. Mời các bạn tham khảo!
Cập nhật ngày
18/10/2021
Thời gian
40 Phút
Tham gia thi
1 Lần thi
Câu 1: Gieo 20 lần một con xúc sắc cân đối đồng chất. X là số mặt 6 chấm. Kỳ vọng M(3X+2):
A. 4
B. 16/5
C. 14
D. 12
Câu 11: Có hai kiện hàng, kiện thứ nhất có 8 sản phẩm, trong đó có 3 sản phẩm loại A; kiện thứ hai có 6 sản phẩm, trong đó có 2 sản phẩm loại A. Lần đầu lấy ngẫu nhiên 1 sản phẩm ở kiện thứ nhất bỏ vào kiện thứ hai, sau đó từ kiện thứ hai lấy ra 2 sản phẩm (lấy không hoàn lại). Gọi X là số sản phẩm loại A có trong 2 sản phẩm lấy ra từ kiện thứ hai. Thì luật phân phối xác suất của X là:
A. X 0 1 2 PX \(\frac{{17}}{{42}}\) \(\frac{{43}}{{84}}\) \(\frac{{1}}{{12}}\)
B. Tất cả đều sai
Câu 12: Có hai kiện hàng, kiện thứ nhất có 8 sản phẩm, trong đó có 3 sản phẩm loại A; kiện thứ hai có 6 sản phẩm, trong đó có 2 sản phẩm loại A. Lần đầu lấy ngẫu nhiên 1 sản phẩm ở kiện thứ nhất bỏ vào kiện thứ hai, sau đó từ kiện thứ hai lấy ra 2 sản phẩm (lấy không hoàn lại). Gọi X là số sản phẩm loại A có trong 2 sản phẩm lấy ra từ kiện thứ hai. Thì kỳ vọng, phương sai của X là:
A. \(\frac{{19}}{{28}}\& \frac{1}{6}\)
B. \(\frac{{19}}{{28}}\& \frac{905}{2352}\)
C. \(\frac{{19}}{{28}}\& \frac{95}{151}\)
D. \(\frac{{19}}{{28}}\& \frac{1}{22}\)
Câu 13: Một hộp đựng 5 chai thuốc trong đó có 1 chai thuốc giả. Người ta lần lượt kiểm tra từng chai cho đến khi phát hiện được chai thuốc giả thì thôi (giả thiết các chai thuốc phải qua kiểm tra mới xác định được là thuốc giả hay tốt). Thì luật phân phối xác suất của số chai thuốc được kiểm tra theo công thức:
A. \(P\left( {X = j} \right) = P\left( {\overline {{A_1}} } \right)P\left( {\overline {{A_2}} } \right)...P\left( {\overline {{A_{j - j}}} } \right)P\left( {{A_j}/{A_1}{A_2}...{A_{j - 1}}} \right),\forall j = \overline {1,5}\)
B. \(P\left( {X = j} \right) = P\left( {{A_1}} \right)P\left( {{A_2}} \right)...P\left( {{A_{j - 1}}} \right)P\left( {{A_j}/\overline {{A_1}{A_2}} ...\overline {{A_{j - 1}}} } \right),\forall j = \overline {1,5}\)
C. \(P\left( {X = j} \right) = P\left( {\overline {{A_1}} } \right)P\left( {\overline {{A_2}} } \right)...P\left( {\overline {{A_{j - j}}} } \right)P\left( {{A_j}/\overline {{A_1}{A_2}} ...\overline {{A_{j - 1}}} } \right),\forall j = \overline {1,5}\)
D. Một công thức khác
Câu 15: Một cửa hàng bán một loại sản phẩm trong đó 40% do phân xưởng 1 sản xuất, còn lại do phân xưởng 2 sản xuất. Tỷ lệ sản phẩm A do phân xưởng 1 và 2 sản xuất tương ứng là 0,8; 0,9. Mua ngẫu nhiên 1 sản phẩm từ cửa hàng và thấy đó không phải sản phẩm loại A. Hỏi sản phẩm đó có khả năng do phân xưởng nào sản xuất nhiều hơn.
A. Nhà máy I (vì p(A1/B) = 0,57 > p(A2/B) = 0,43)
B. Nhà máy II (vì p(A2/B) = 0,57 > p(A1/B) = 0,43)
C. Nhà máy II (vì p(A2/B) = 0,43 > p(A1/B) = 0,57)
D. Khả năng sản phẩm của nhà máy I và II là như nhau
Câu 16: Có 2 cây súng cùng bắn vào một bia, XS súng I bắn trúng bia là 70%, XS súng II bắn trúng bia là 80%.Sau khi bắn hai phát , đặt A là biến cố “trong hai viên có một viên trúng” , B là biến cố “viên của súng II trúng”, C là biến cố “cả hai viên trúng”. Chọn đáp án đúng:
A. P(B) = 0.24, P(C) = 0.56, P(B/C) = 0.25
B. P(B) = 0.8, P(C) = 0.56, P(B/C) = 1/7
C. P(B) = 0.8, P(C) = 0.56, P(B/C) = 1
D. P(B) = 0.8, P(C) = 0.56, P(B/C) = 0
Câu 17: Có 2 cây súng cùng bắn vào một bia, XS súng I bắn trúng bia là 70%, XS súng II bắn trúng bia là 80%. Sau khi bắn hai phát , đặt A là biến cố “trong hai viên chỉ có một viên trúng”, B là biến cố “viên của súng I trúng”, C là biến cố “cả hai viên trúng”. Chọn đáp án đúng:
A. P(A/C) = 0, P(B/C) = 1, P(B/A) = 7/19
B. P(A/C) = 1, P(B/C) = 0, P(B/A) = 0.5
C. P(A/C) = 19/28, P(B/C) = 1/8, P(B/A) = 7/38
D. P(A/C) = 0, P(B/C) = 1/8, P(B/A) = 7/38
Câu 18: Một bình chứa 10 bi, và có 5 bi đỏ, 3 bi vàng. Lấy NN lần I ra 1 bi để trên bàn, sau đó lấy lần II ra 2 bi nữa để trên bàn. Tính XS để lần II lấy ra chỉ được 2 bi đỏ.
A. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^1C_5^2}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_5^2}}{{C_{10}^1C_9^2}}\)
B. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^2C_5^2}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_9^2}}\)
C. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^1C_5^1}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_9^2}}\)
D. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_{10}^2}} + \frac{{C_3^1C_5^1}}{{C_{10}^1C_{10}^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_{10}^2}}\)
Câu 20: Cho X là biến ngẫu nhiên có phân phối chuẩn kỳ vọng μ = 10, phương sai σ2 = 2.52. Xác suất của biến cố p[6 ≤ X < 14] là:
A. 0.49714
B. 0.9836
C. 0.9936
D. 0.8904
Câu 21: Theo dõi thời gian hoàn thành sản phẩm của 50 công nhân ta có bảng số liệu sau:
A. 19.28
B. 20.23
C. 21.05
D. 20.72
Chủ đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án Xem thêm...
- 1 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Chia sẻ:
Đăng Nhập để viết bình luận