Câu hỏi: Có 2 cây súng cùng bắn vào một bia, XS súng I bắn trúng bia là 70%, XS súng II bắn trúng bia là 80%.Sau khi bắn hai phát , đặt A là biến cố “trong hai viên có một viên trúng” , B là biến cố “viên của súng II trúng”, C là biến cố “cả hai viên trúng”. Chọn đáp án đúng:
A. P(B) = 0.24, P(C) = 0.56, P(B/C) = 0.25
B. P(B) = 0.8, P(C) = 0.56, P(B/C) = 1/7
C. P(B) = 0.8, P(C) = 0.56, P(B/C) = 1
D. P(B) = 0.8, P(C) = 0.56, P(B/C) = 0
Câu 1: Có hai kiện hàng, kiện thứ nhất có 8 sản phẩm, trong đó có 3 sản phẩm loại A; kiện thứ hai có 6 sản phẩm, trong đó có 2 sản phẩm loại A. Lần đầu lấy ngẫu nhiên 1 sản phẩm ở kiện thứ nhất bỏ vào kiện thứ hai, sau đó từ kiện thứ hai lấy ra 2 sản phẩm (lấy không hoàn lại). Gọi X là số sản phẩm loại A có trong 2 sản phẩm lấy ra từ kiện thứ hai. Thì luật phân phối xác suất của X là:
A. X 0 1 2 PX \(\frac{{17}}{{42}}\) \(\frac{{43}}{{84}}\) \(\frac{{1}}{{12}}\)
B. Tất cả đều sai
30/08/2021 2 Lượt xem
Câu 2: Một hộp đựng 4 bi xanh và 6 bi đỏ (cùng kích cỡ). Lấy lần lượt có hoàn lại 5 bi, mỗi lần 1 bi. Gọi X là số bi xanh lấy được. Kỳ vọng M(X) là:
A. 2
B. 6/5
C. 4
D. 12/5
30/08/2021 3 Lượt xem
Câu 3: Một hộp đựng 5 chai thuốc trong đó có 1 chai thuốc giả. Người ta lần lượt kiểm tra từng chai cho đến khi phát hiện được chai thuốc giả thì thôi (giả thiết các chai thuốc phải qua kiểm tra mới xác định được là thuốc giả hay tốt). Thì luật phân phối xác suất của số chai thuốc được kiểm tra theo công thức:
A. \(P\left( {X = j} \right) = P\left( {\overline {{A_1}} } \right)P\left( {\overline {{A_2}} } \right)...P\left( {\overline {{A_{j - j}}} } \right)P\left( {{A_j}/{A_1}{A_2}...{A_{j - 1}}} \right),\forall j = \overline {1,5}\)
B. \(P\left( {X = j} \right) = P\left( {{A_1}} \right)P\left( {{A_2}} \right)...P\left( {{A_{j - 1}}} \right)P\left( {{A_j}/\overline {{A_1}{A_2}} ...\overline {{A_{j - 1}}} } \right),\forall j = \overline {1,5}\)
C. \(P\left( {X = j} \right) = P\left( {\overline {{A_1}} } \right)P\left( {\overline {{A_2}} } \right)...P\left( {\overline {{A_{j - j}}} } \right)P\left( {{A_j}/\overline {{A_1}{A_2}} ...\overline {{A_{j - 1}}} } \right),\forall j = \overline {1,5}\)
D. Một công thức khác
30/08/2021 2 Lượt xem
Câu 4: Một cửa hàng bán một loại sản phẩm trong đó 40% do phân xưởng 1 sản xuất, còn lại do phân xưởng 2 sản xuất. Tỷ lệ sản phẩm A do phân xưởng 1 và 2 sản xuất tương ứng là 0,8; 0,9. Mua ngẫu nhiên 1 sản phẩm từ cửa hàng và thấy đó không phải sản phẩm loại A. Hỏi sản phẩm đó có khả năng do phân xưởng nào sản xuất nhiều hơn.
A. Nhà máy I (vì p(A1/B) = 0,57 > p(A2/B) = 0,43)
B. Nhà máy II (vì p(A2/B) = 0,57 > p(A1/B) = 0,43)
C. Nhà máy II (vì p(A2/B) = 0,43 > p(A1/B) = 0,57)
D. Khả năng sản phẩm của nhà máy I và II là như nhau
30/08/2021 2 Lượt xem
Câu 5: Gieo 20 lần một con xúc sắc cân đối đồng chất. X là số mặt 6 chấm. Kỳ vọng M(3X+2):
A. 4
B. 16/5
C. 14
D. 12
30/08/2021 2 Lượt xem
Câu 6: Một bình chứa 10 bi, và có 5 bi đỏ, 3 bi vàng. Lấy NN lần I ra 1 bi để trên bàn, sau đó lấy lần II ra 2 bi nữa để trên bàn. Tính XS để lần II lấy ra chỉ được 2 bi đỏ.
A. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^1C_5^2}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_5^2}}{{C_{10}^1C_9^2}}\)
B. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^2C_5^2}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_9^2}}\)
C. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^1C_5^1}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_9^2}}\)
D. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_{10}^2}} + \frac{{C_3^1C_5^1}}{{C_{10}^1C_{10}^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_{10}^2}}\)
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 2
- 1 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Chia sẻ:
Đăng Nhập để viết bình luận