Câu hỏi: Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được một con cá ở chỗ thứ nhất, thứ hai, thứ ba tương ứng là 0,6; 0,7; 0,8. Biết rằng ở mỗi chỗ, người đó đã thả câu 3 lần và có một lần câu được cá. Tính xác suất để đó là chỗ thứ nhất.
A. 2/7
B. 1/3
C. 8/21
D. 2/21
Câu 1: Tuổi thọ X của một loại sản phẩm (giờ) là một biến ngẫu nhiên liên tục có hàm mật độ xác suất là \(f\left( x \right) = \left\{ \begin{array}{l} 0,x < 100\\ \frac{{{{2.10}^4}}}{{{x^3}}},x \ge 100 \end{array} \right.\) ![]()
A. 200
B. 225
C. 250
D. 300
30/08/2021 3 Lượt xem
Câu 2: Xác suất để một người bị phản ứng từ việc tiêm huyết thanh là 0,001. Xác suất để trong 2000 người tiêm huyết thanh, có đúng 3 người bị phản ứng:
A. 10-9
B. 0,003
C. 0,1804
D. 0
30/08/2021 2 Lượt xem
Câu 3: Có 3 hộp, mỗi hộp đựng 5 viên bi, trong đó hộp thứ nhất có 1 bi trắng; hộp thứ hai có 2 bi trắng; hộp thứ ba có 3 bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên bi. Nếu trong 3 bi lấy ra có 1 bi trắng. Thì xác suất để viên bi trắng đó là của hộp thứ nhất.
A. 1/25
B. 6/125
C. 6/25
D. 1/6
30/08/2021 2 Lượt xem
Câu 4: Có 2 cây súng cùng bắn vào một bia, XS súng I bắn trúng bia là 70%, XS súng II bắn trúng bia là 80%. Sau khi bắn hai phát , đặt A là biến cố “trong hai viên chỉ có một viên trúng”, B là biến cố “viên của súng I trúng”, C là biến cố “cả hai viên trúng”. Chọn đáp án đúng:
A. P(A/C) = 0, P(B/C) = 1, P(B/A) = 7/19
B. P(A/C) = 1, P(B/C) = 0, P(B/A) = 0.5
C. P(A/C) = 19/28, P(B/C) = 1/8, P(B/A) = 7/38
D. P(A/C) = 0, P(B/C) = 1/8, P(B/A) = 7/38
30/08/2021 4 Lượt xem
Câu 5: Có 2 cây súng cùng bắn vào một bia, XS súng I bắn trúng bia là 70%, XS súng II bắn trúng bia là 80%.Sau khi bắn hai phát , đặt A là biến cố “trong hai viên có một viên trúng” , B là biến cố “viên của súng II trúng”, C là biến cố “cả hai viên trúng”. Chọn đáp án đúng:
A. P(B) = 0.24, P(C) = 0.56, P(B/C) = 0.25
B. P(B) = 0.8, P(C) = 0.56, P(B/C) = 1/7
C. P(B) = 0.8, P(C) = 0.56, P(B/C) = 1
D. P(B) = 0.8, P(C) = 0.56, P(B/C) = 0
30/08/2021 2 Lượt xem
Câu 6: Một hộp đựng 5 chai thuốc trong đó có 1 chai thuốc giả. Người ta lần lượt kiểm tra từng chai cho đến khi phát hiện được chai thuốc giả thì thôi (giả thiết các chai thuốc phải qua kiểm tra mới xác định được là thuốc giả hay tốt). Thì luật phân phối xác suất của số chai thuốc được kiểm tra theo công thức:
A. \(P\left( {X = j} \right) = P\left( {\overline {{A_1}} } \right)P\left( {\overline {{A_2}} } \right)...P\left( {\overline {{A_{j - j}}} } \right)P\left( {{A_j}/{A_1}{A_2}...{A_{j - 1}}} \right),\forall j = \overline {1,5}\)
B. \(P\left( {X = j} \right) = P\left( {{A_1}} \right)P\left( {{A_2}} \right)...P\left( {{A_{j - 1}}} \right)P\left( {{A_j}/\overline {{A_1}{A_2}} ...\overline {{A_{j - 1}}} } \right),\forall j = \overline {1,5}\)
C. \(P\left( {X = j} \right) = P\left( {\overline {{A_1}} } \right)P\left( {\overline {{A_2}} } \right)...P\left( {\overline {{A_{j - j}}} } \right)P\left( {{A_j}/\overline {{A_1}{A_2}} ...\overline {{A_{j - 1}}} } \right),\forall j = \overline {1,5}\)
D. Một công thức khác
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 2
- 1 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án
- 489
- 14
- 30
-
61 người đang thi
- 422
- 3
- 30
-
60 người đang thi
- 374
- 5
- 30
-
19 người đang thi
- 476
- 2
- 30
-
47 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận