Câu hỏi: Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được một con cá ở chỗ thứ nhất, thứ hai, thứ ba tương ứng là 0,6; 0,7; 0,8. Biết rằng ở mỗi chỗ, người đó đã thả câu 3 lần và có một lần câu được cá. Tính xác suất để đó là chỗ thứ nhất.

490 Lượt xem
30/08/2021
3.4 9 Đánh giá

A. 2/7

B. 1/3

C. 8/21

D. 2/21

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3: Một bình chứa 10 bi, và có 5 bi đỏ, 3 bi vàng. Lấy NN lần I ra 1 bi để trên bàn, sau đó lấy lần II ra 2 bi nữa để trên bàn. Tính XS để lần II lấy ra chỉ được 2 bi đỏ.

A. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^1C_5^2}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_5^2}}{{C_{10}^1C_9^2}}\)

B. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^2C_5^2}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_9^2}}\)

C. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_9^2}} + \frac{{C_3^1C_5^1}}{{C_{10}^1C_9^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_9^2}}\)

D. \(\frac{{C_5^1C_4^2}}{{C_{10}^1C_{10}^2}} + \frac{{C_3^1C_5^1}}{{C_{10}^1C_{10}^2}} + \frac{{C_2^1C_4^2}}{{C_{10}^1C_{10}^2}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 2
Thông tin thêm
  • 1 Lượt thi
  • 40 Phút
  • 30 Câu hỏi
  • Sinh viên