Câu hỏi: Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
A. 45
B. 280
C. 325
D. 605
Câu 1: Cho X là biến ngẫu nhiên có phân phối chuẩn kỳ vọng μ = 10, phương sai σ2 = 2.52. Xác suất của biến cố p[6 ≤ X < 14] là:
A. 0.49714
B. 0.9836
C. 0.9936
D. 0.8904
30/08/2021 2 Lượt xem
30/08/2021 2 Lượt xem
Câu 3: Một người có 4 cái quần khác nhau, 6 cái áo khác nhau, 3 chiếc cà vạt khác nhau. Để chọn một cái quần hoặc một cái áo hoặc một cái cà vạt thì số cách chọn khác nhau là: ![]()
A. 13
B. 72
C. 12
D. 30
30/08/2021 2 Lượt xem
Câu 4: Một hộp đựng 5 chai thuốc trong đó có 1 chai thuốc giả. Người ta lần lượt kiểm tra từng chai cho đến khi phát hiện được chai thuốc giả thì thôi (giả thiết các chai thuốc phải qua kiểm tra mới xác định được là thuốc giả hay tốt). Thì luật phân phối xác suất của số chai thuốc được kiểm tra theo công thức:
A. \(P\left( {X = j} \right) = P\left( {\overline {{A_1}} } \right)P\left( {\overline {{A_2}} } \right)...P\left( {\overline {{A_{j - j}}} } \right)P\left( {{A_j}/{A_1}{A_2}...{A_{j - 1}}} \right),\forall j = \overline {1,5}\)
B. \(P\left( {X = j} \right) = P\left( {{A_1}} \right)P\left( {{A_2}} \right)...P\left( {{A_{j - 1}}} \right)P\left( {{A_j}/\overline {{A_1}{A_2}} ...\overline {{A_{j - 1}}} } \right),\forall j = \overline {1,5}\)
C. \(P\left( {X = j} \right) = P\left( {\overline {{A_1}} } \right)P\left( {\overline {{A_2}} } \right)...P\left( {\overline {{A_{j - j}}} } \right)P\left( {{A_j}/\overline {{A_1}{A_2}} ...\overline {{A_{j - 1}}} } \right),\forall j = \overline {1,5}\)
D. Một công thức khác
30/08/2021 2 Lượt xem
Câu 5: Gieo 20 lần một con xúc sắc cân đối đồng chất. X là số mặt 6 chấm. Kỳ vọng M(3X+2):
A. 4
B. 16/5
C. 14
D. 12
30/08/2021 2 Lượt xem
Câu 6: Có hai kiện hàng, kiện thứ nhất có 8 sản phẩm, trong đó có 3 sản phẩm loại A; kiện thứ hai có 6 sản phẩm, trong đó có 2 sản phẩm loại A. Lần đầu lấy ngẫu nhiên 1 sản phẩm ở kiện thứ nhất bỏ vào kiện thứ hai, sau đó từ kiện thứ hai lấy ra 2 sản phẩm (lấy không hoàn lại). Gọi X là số sản phẩm loại A có trong 2 sản phẩm lấy ra từ kiện thứ hai. Thì kỳ vọng, phương sai của X là:
A. \(\frac{{19}}{{28}}\& \frac{1}{6}\)
B. \(\frac{{19}}{{28}}\& \frac{905}{2352}\)
C. \(\frac{{19}}{{28}}\& \frac{95}{151}\)
D. \(\frac{{19}}{{28}}\& \frac{1}{22}\)
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 2
- 1 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án
- 423
- 14
- 30
-
79 người đang thi
- 370
- 3
- 30
-
12 người đang thi
- 340
- 5
- 30
-
30 người đang thi
- 421
- 2
- 30
-
24 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận