Câu hỏi: Tìm s để chuỗi \(\sum\limits_{n = 1}^{ + \infty } {(1 + \frac{2}{{{n^{s - 2}}}}} )\)  phần kỳ:

94 Lượt xem
30/08/2021
3.5 6 Đánh giá

A. s>2

B. s<3

C. \(s \le 3\)

D. \(\forall s \in R\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Khảo sát sự hội tụ của chuỗi \(\sum\limits_{n = 1}^{ + \infty } {\frac{{\cos (n + 1)}}{{n\sqrt n }}}\)

A. Chuỗi (1) hội tụ tuyệt đối

B. Chuỗi (1) phân kỳ

C. Chuỗi (1) hội tụ về 0

D. Chưa đủ điều kiện khẳng định chuỗi (1) hội tụ hay phân kỳ

Xem đáp án

30/08/2021 3 Lượt xem

Câu 5: Chuỗi số dương \(\sum\limits_{n = 1}^{ + \infty } {{u_n}} \)  hội tụ thì

A. \({u_n} = 0,\forall n\)

B. \({u_n} \le 1,\forall n\)

C. \({u_n}\to 0\)

D. \(\mathop {\lim }\limits_{n \to + \infty } ({u_1} + {u_2} + ... + {u_n}) = 0\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Nhận dạng phương trình vi phân \({x^3}y' = y({x^2} + {y^4})\)

A. Tuyến tính

B. Toàn phần

C. Bernoulli

D. Tách biến

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp C3 - Phần 2
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 20 Câu hỏi
  • Sinh viên