Câu hỏi: Tìm miền hội tụ của chuỗi \(\sum\limits_{n = 1}^{ + \infty } {\frac{{{x^n}}}{{(n + 1){{.7}^n}}}} \)

97 Lượt xem
30/08/2021
3.7 6 Đánh giá

A. (-7;7]

B. [-7;7]

C. [-7;7) 

D. (-7;7)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Tính tổng riêng thứ n của chuỗi \(\sum\limits_{n = 1}^{ + \infty } {\frac{1}{{{9^{n - 1}}}}} \)

A. \({s_n} = \frac{9}{8}(1 - \frac{1}{{{9^{n + 1}}}})\)

B. \({s_n} = \frac{1}{8}(1 - \frac{1}{{{9^{n }}}})\)

C. \({s_n} = (1 - \frac{1}{{{9^{n }}}})\)

D. \({s_n} = \frac{9}{8}(1 - \frac{1}{{{9^{n}}}})\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 4: Cho chuỗi số \(\sum\limits_{n = 1}^{ + \infty } {\frac{1}{{n(n + 1)}}} \) . Tổng riêng thứ n của chuỗi là:

A. \({s_n} = 1 - \frac{1}{n}\)

B. \({s_n} = 1 - \frac{1}{n+1}\)

C. \({s_n} = 1 + \frac{1}{n+1}\)

D. \({s_n} = 1\)

Xem đáp án

30/08/2021 4 Lượt xem

Câu 6: Khảo sát sự hội tụ của chuỗi \(\sum\limits_{n = 1}^{ + \infty } {\frac{{\cos (n + 1)}}{{n\sqrt n }}}\)

A. Chuỗi (1) hội tụ tuyệt đối

B. Chuỗi (1) phân kỳ

C. Chuỗi (1) hội tụ về 0

D. Chưa đủ điều kiện khẳng định chuỗi (1) hội tụ hay phân kỳ

Xem đáp án

30/08/2021 3 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp C3 - Phần 2
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 20 Câu hỏi
  • Sinh viên