Câu hỏi: Tìm s để chuỗi \(\sum\limits_{n = 1}^{ + \infty } {\frac{{{n^{2s + 1}}}}{{{{(n + 1)}^2}{n^{s - 1}}}}} \) hội tụ.

104 Lượt xem
30/08/2021
3.4 9 Đánh giá

A. s > -1 

B. s < 1

C. \(s \ge - 1\)

D. \(s \le 1\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tính tổng riêng thứ n của chuỗi \(\sum\limits_{n = 1}^{ + \infty } {\frac{1}{{{9^{n - 1}}}}} \)

A. \({s_n} = \frac{9}{8}(1 - \frac{1}{{{9^{n + 1}}}})\)

B. \({s_n} = \frac{1}{8}(1 - \frac{1}{{{9^{n }}}})\)

C. \({s_n} = (1 - \frac{1}{{{9^{n }}}})\)

D. \({s_n} = \frac{9}{8}(1 - \frac{1}{{{9^{n}}}})\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 2: Tìm nghiệm tổng quát của phương trình 

A. \(\arctan y = {x^2} + C\)

B. \(2\arctan y = {(x + 1)^2} + C\)

C. \(\arctan y = \frac{1}{4}{x^2} + C\)

D. \(\arctan y = {(x + 1)^2} + C\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 4: Chuỗi số dương \(\sum\limits_{n = 1}^{ + \infty } {{u_n}} \)  hội tụ thì

A. \({u_n} = 0,\forall n\)

B. \({u_n} \le 1,\forall n\)

C. \({u_n}\to 0\)

D. \(\mathop {\lim }\limits_{n \to + \infty } ({u_1} + {u_2} + ... + {u_n}) = 0\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 5: Nhận dạng phương trình vi phân \({x^3}y' = y({x^2} + {y^4})\)

A. Tuyến tính

B. Toàn phần

C. Bernoulli

D. Tách biến

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp C3 - Phần 2
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 20 Câu hỏi
  • Sinh viên