Trắc Nghiệm Hay giới thiệu đến các bạn Trắc nghiệm Hai đường thẳng chéo nhau và hai đường thẳng song song có đáp án. Tài liệu bao gồm 28 câu hỏi kèm đáp án thuộc danh mục Chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song. Tài liệu này sẽ giúp các bạn ôn tập, củng cố lại kiến thức để chuẩn bị cho các kỳ thi sắp tới. Mời các bạn tham khảo!
Cập nhật ngày
30/11/2021
Thời gian
45 Phút
Tham gia thi
0 Lần thi
Câu 1: Trong các phát biểu sau, phát biểu nào đúng?
A. Hai đường thẳng không có điểm chung thì song song với nhau
B. Hai đường thẳng không có điểm chung thì chéo nhau
C. Hai đường thẳng phân biệt không cắt nhau thì song song
D. Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau.
Câu 2: Trong không gian cho ba đường thẳng a, b và c. Trong các phát biểu sau, phát biểu nào là đúng?
A. Nếu hai đường thẳng cùng song song với một đường thẳng thứ ba thì chúng song song với nhau
B. Nếu hai đường thẳng cùng chéo nhau với một đường thẳng thứ ba thì chúng chéo nhau.
C. Nếu đường thẳng a song song với b, đường thẳng b và c chéo nhau thì a và c chéo nhau hoặc cắt nhau.
D. Nếu hai đường thẳng a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau hoặc song song.
Câu 3: Cho hai đường thẳng a và b chéo nhau. Một đường thẳng c song song với a. khẳng định nào sau đây là đúng?
A. b và c chéo nhau
B. b và c cắt nhau
C. b và c chéo nhau hoặc cắt nhau
D. b và c song song với nhau
Câu 4: Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm giao tuyến của (MAB) với (SCD).
A. Giao tuyến của (MAB) với (SCD) là điểm M
B. Giao điểm của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của SD và đường thẳng đi qua M, song song với AB.
C. Giao tuyến của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của MB và SD.
D. Giao tuyến của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của MA và SD.
Câu 5: Cho hình chóp S. ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Tìm thiết diện của hình chóp S.ABCD cắt bởi (IJG)
A. Thiết diện là tam giác GIJ.
B. Thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
C. Thiết diện là hình bình hành MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
D. Thiết diện là tam giác KIJ, với K là giao điểm của GI với SB.
Câu 7: Trong các phát biểu sau đây, phát biểu nào sai?
A. hai đường thẳng song song thì đồng phẳng
B. hai đường thẳng không có điểm chung thì chéo nhau
C. hai đường thẳng chéo nhau thì không đồng phẳng
D. Hai đường thẳng cắt nhau thì đồng phẳng
Câu 8: Cho hai đường thẳng trong không gian không có điểm chung, khẳng định nào sau đây là đúng?
A. hai đường thẳng song song
B. hai đường thẳng chéo nhau
C. hai đường thẳng song song hoặc chéo nhau
D. hai đường thẳng không đồng phẳng
Câu 9: Cho hai đường thẳng a và b cắt nhau. Đường thẳng c song song với a. khẳng định nào sau đây là đúng?
A. b và c chéo nhau
B. b và c cắt nhau
C. b và c chéo nhau hoặc cắt nhau
D. b và c song song với nhau
Câu 10: Cho hình hộp ABCD.EFHG, khẳng định nào sau đây là sai?
A. EF song song với CD
B. CE song song với FH
C. EH song song với AD
D. GE song song với BD
Câu 11: Cho hình chóp S. ABCD, đáy là hình bình hành ABCD, điểm N thuộc cạnh SC sao cho 2NC = NS, M là trọng tâm của tam giác CBD. Phát biểu nào sau đây là đúng?
A. MN song song với SA
B. MN và SA cắt nhau
C. MN và SA chéo nhau
D. MN và SA không đồng phẳng.
Câu 12: Ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt. khẳng định nào sau đây là đúng?
A. ba giao tuyến này đôi một song song
B. ba giao tuyến này hoặc đồng quy hoặc đôi một song song
C. ba giao tuyến này đồng quy
D. ba giao tuyến này đôi một cắt nhau tạo thành một tam giác.
Câu 13: Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?
A. MP, AC song song với nhau
B. MP và NQ chéo nhau
C. NQ và BD cắt nhau
D. MP và BC đồng phẳng
Câu 14: Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?
A. MR, SN song song với nhau
B. MN, PQ, RS đồng quy
C. MRNS là hình bình hành
D. 6 điểm M, N, P, Q, R, S đồng phẳng
Câu 15: Cho tứ diện ABCD, G là trọng tâm tam giác ABD, N là trung điểm của AD, M là trung điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?
A. MG // CN
B. MG và CN cắt nhau
C. MG // AB
D. MG và CN chéo nhau.
Câu 16: Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?
(1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.
(2) Nếu mặt phẳng (a,b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.
(3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.
A. Chỉ có (1) sai.
B. Chỉ có (2) sai
C. Chỉ có (3) sai
D. (1), (2) và (3) đều sai
Câu 17: Cho hai đường thẳng a và b chéo nhau. Xét hai đường thẳng p, q mà mà mỗi đường đều cắt cả a và b. Trường hợp nào sau đây không thể xảy ra.
A. p cắt q
B. p ≡ q
C. p // q
D. p và q chéo nhau
Câu 18: Cho hai đường thẳng a và b chéo nhau. Những phát biểu nào sau đây là sai?
(1) tồn tại hai đường thẳng c, d song song với nhau, mỗi đường đều cắt cả a và b.
(2) không thể tồn tại hai đường thẳng c, d phân biệt, mỗi đường đều cắt cả a và b.
(3) không thể tồn tại một đường thẳng cắt cả a và b.
A. chỉ có (1) sai
B. chỉ có (2) sai
C. chỉ có (3) sai
D. (1), (2) và (3) đều sai.
Câu 20: Giả sử (P) , (Q), (R) là ba mặt phẳng cắt nhau theo ba giao tuyến phân biệt a, b, c trong đó a = (P) ∩ (R), b = (Q) ∩ (R), c = (P) ∩ (Q). Trong các mệnh đề sau, mệnh đề nào sai?
A. a và b cắt nhau hoặc song song với nhau.
B. ba giao tuyến a, b, c đồng quy hoặc đôi một cắt nhau.
C. nếu a và b song song với nhau thì a và c không thể cắt nhau, b và c không thể cắt nhau.
D. ba giao tuyến a, b, c đồng quy hoặc đôi một song song.
Câu 21: Cho hình chóp S. ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD. Khẳng định nào sau đây là đúng?
A. MN // PQ với P là giao điểm của SM và AB; Q là giao điểm của SN và AD
B. MN, BD chéo nhau.
C. MN và BD cắt nhau.
D. MN là đường trung bình của tam giác IBD với I là trung điểm của SA.
Câu 22: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là các điểm nằm trên các cạnh BC, SC, SD, AD sao cho MN//BS, NP//CD, MQ // CD. Những khẳng định nào sau đây là đúng?
1) PQ // SA
(2) PQ // MN
(3) tứ giác MNPQ là hình thang
(4) tứ giác MNPQ là hình bình hành
A. (4)
B. (1) và (3)
C. (2) và (3)
D. (2) và (4)
Câu 23: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SB.
Gọi (P) là mặt phẳng qua M và song song với SA; BC.
Thiết diện của hình chóp cắt bởi mặt phẳng (P) là :
A. Tam giác
B. Tam giác cân tại M
C. Hình thang
D. Hình thang cân
Câu 24: Cho hình chóp S.ABCD. trên các cạnh AC, SC lấy lần lượt các điểm I, K sao cho:
mặt phẳng (α) đi qua IK cắt các đường thẳng AB, AD, SD, SB tại các điểm theo thứ tự là M, N, P, Q. Khẳng định nào sau đây là đúng?
A. MQ và NP cắt nhau
B. tứ giác MNPQ là hình bình hành
C. tứ giác MNPQ không có cặp cạnh nào song song
D. MQ // NP
Câu 25: Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Khẳng định nào sau đây là đúng?
A. giao tuyến của (SAB) và (SCD) là điểm S.
B. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và song song với AB.
C. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và cắt AB.
D. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và chéo nhau với AB.
Câu 26: Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm thiết diện của (MAB) với hình chóp.
A. thiết diện của (MAB) với hình chóp S.ABCD là tam giác MAB.
B. thiết diện của (MAB) với hình chóp, S.ABCD là tứ giác ABMN, với N là giao điểm của SD với đường thẳng đi qua M và song song với AB.
C. thiết diện của (MAB) với hình chóp S.ABCD là tứ giác ABMN, với N là giao điểm của MB và SD.
D. thiết diện của (MAB) với hình chóp S.ABCD là tứ giác ABMN, với N là giao điểm của MA và SD.
Câu 27: Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm khẳng định đúng
A. giao tuyến của (SAB) và (IJG) là điểm G.
B. giao tuyến của (SAB) và (IJG) là SG.
C. giao tuyến của (SAB) và (IJG) là đường thẳng MG, với M là giao điểm của đường thẳng qua G và song song với AB .
D. giao tuyến của (SAB) và (IJG) là đường thẳng MN, với N là giao điểm của IG với SB, M là giao điểm của JG với SA.
Chia sẻ:
Đăng Nhập để viết bình luận