Trắc nghiệm Hai đường thẳng chéo nhau và hai đường thẳng song song có đáp án

Trắc nghiệm Hai đường thẳng chéo nhau và hai đường thẳng song song có đáp án

  • 30/11/2021
  • 28 Câu hỏi
  • 279 Lượt xem

Trắc Nghiệm Hay giới thiệu đến các bạn Trắc nghiệm Hai đường thẳng chéo nhau và hai đường thẳng song song có đáp án. Tài liệu bao gồm 28 câu hỏi kèm đáp án thuộc danh mục Chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song. Tài liệu này sẽ giúp các bạn ôn tập, củng cố lại kiến thức để chuẩn bị cho các kỳ thi sắp tới. Mời các bạn tham khảo!

3.3 8 Đánh giá
Cập nhật ngày

30/11/2021

Thời gian

45 Phút

Tham gia thi

0 Lần thi

Câu 1:

Trong các phát biểu sau, phát biểu nào đúng?

A. Hai đường thẳng không có điểm chung thì song song với nhau

B. Hai đường thẳng không có điểm chung thì chéo nhau

C. Hai đường thẳng phân biệt không cắt nhau thì song song

D. Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau.

Câu 2:

Trong không gian cho ba đường thẳng a, b và c. Trong các phát biểu sau, phát biểu nào là đúng?

A. Nếu hai đường thẳng cùng song song với một đường thẳng thứ ba thì chúng song song với nhau

B. Nếu hai đường thẳng cùng chéo nhau với một đường thẳng thứ ba thì chúng chéo nhau.

C. Nếu đường thẳng a song song với b, đường thẳng b và c chéo nhau thì a và c chéo nhau hoặc cắt nhau.

D. Nếu hai đường thẳng a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau hoặc song song.

Câu 3:

Cho hai đường thẳng a và b chéo nhau. Một đường thẳng c song song với a. khẳng định nào sau đây là đúng?

A. b và c chéo nhau

B. b và c cắt nhau

C. b và c chéo nhau hoặc cắt nhau

D. b và c song song với nhau

Câu 4:

Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm giao tuyến của (MAB) với (SCD).

A. Giao tuyến của (MAB) với (SCD) là điểm M

B. Giao điểm của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của SD và đường thẳng đi qua M, song song với AB.

C. Giao tuyến của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của MB và SD.

D. Giao tuyến của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của MA và SD.

Câu 5:

Cho hình chóp S. ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Tìm thiết diện của hình chóp S.ABCD cắt bởi (IJG)

A. Thiết diện là tam giác GIJ.

B. Thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.

C. Thiết diện là hình bình hành MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.

D. Thiết diện là tam giác KIJ, với K là giao điểm của GI với SB.

Câu 7:

Trong các phát biểu sau đây, phát biểu nào sai?

A. hai đường thẳng song song thì đồng phẳng

B. hai đường thẳng không có điểm chung thì chéo nhau

C. hai đường thẳng chéo nhau thì không đồng phẳng

D. Hai đường thẳng cắt nhau thì đồng phẳng

Câu 8:

Cho hai đường thẳng trong không gian không có điểm chung, khẳng định nào sau đây là đúng?

A. hai đường thẳng song song

B. hai đường thẳng chéo nhau

C. hai đường thẳng song song hoặc chéo nhau

D. hai đường thẳng không đồng phẳng

Câu 9:

Cho hai đường thẳng a và b cắt nhau. Đường thẳng c song song với a. khẳng định nào sau đây là đúng?

A. b và c chéo nhau

B. b và c cắt nhau

C. b và c chéo nhau hoặc cắt nhau

D. b và c song song với nhau

Câu 10:

Cho hình hộp ABCD.EFHG, khẳng định nào sau đây là sai?

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

A. EF song song với CD

B. CE song song với FH

C. EH song song với AD

D. GE song song với BD

Câu 12:

Ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt. khẳng định nào sau đây là đúng?

A. ba giao tuyến này đôi một song song

B. ba giao tuyến này hoặc đồng quy hoặc đôi một song song

C. ba giao tuyến này đồng quy

D. ba giao tuyến này đôi một cắt nhau tạo thành một tam giác.

Câu 14:

Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

A. MR, SN song song với nhau

B. MN, PQ, RS đồng quy

C. MRNS là hình bình hành

D. 6 điểm M, N, P, Q, R, S đồng phẳng

Câu 20:

Giả sử (P) , (Q), (R) là ba mặt phẳng cắt nhau theo ba giao tuyến phân biệt a, b, c trong đó a = (P) ∩ (R), b = (Q) ∩ (R), c = (P) ∩ (Q). Trong các mệnh đề sau, mệnh đề nào sai?

A. a và b cắt nhau hoặc song song với nhau.

B. ba giao tuyến a, b, c đồng quy hoặc đôi một cắt nhau.

C. nếu a và b song song với nhau thì a và c không thể cắt nhau, b và c không thể cắt nhau.

D. ba giao tuyến a, b, c đồng quy hoặc đôi một song song.

Câu 21:

Cho hình chóp S. ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD. Khẳng định nào sau đây là đúng?

A. MN // PQ với P là giao điểm của SM và AB; Q là giao điểm của SN và AD

B. MN, BD chéo nhau.

C. MN và BD cắt nhau.

D. MN là đường trung bình của tam giác IBD với I là trung điểm của SA.

Câu 25:

Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Khẳng định nào sau đây là đúng?

A. giao tuyến của (SAB) và (SCD) là điểm S.

B. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và song song với AB.

C. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và cắt AB.

D. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và chéo nhau với AB.

Câu 26:

Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm thiết diện của (MAB) với hình chóp.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

A. thiết diện của (MAB) với hình chóp S.ABCD là tam giác MAB.

B. thiết diện của (MAB) với hình chóp, S.ABCD là tứ giác ABMN, với N là giao điểm của SD với đường thẳng đi qua M và song song với AB.

C. thiết diện của (MAB) với hình chóp S.ABCD là tứ giác ABMN, với N là giao điểm của MB và SD.

D. thiết diện của (MAB) với hình chóp S.ABCD là tứ giác ABMN, với N là giao điểm của MA và SD.

Câu 27:

Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm khẳng định đúng

A. giao tuyến của (SAB) và (IJG) là điểm G.

B. giao tuyến của (SAB) và (IJG) là SG.

C. giao tuyến của (SAB) và (IJG) là đường thẳng MG, với M là giao điểm của đường thẳng qua G và song song với AB .

D. giao tuyến của (SAB) và (IJG) là đường thẳng MN, với N là giao điểm của IG với SB, M là giao điểm của JG với SA.

Chưa có bình luận

Đăng Nhập để viết bình luận

Trắc nghiệm Hai đường thẳng chéo nhau và hai đường thẳng song song có đáp án
Thông tin thêm
  • 0 Lượt thi
  • 45 Phút
  • 28 Câu hỏi
  • Học sinh