Câu hỏi:
Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Khẳng định nào sau đây là đúng?
A. giao tuyến của (SAB) và (SCD) là điểm S.
B. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và song song với AB.
C. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và cắt AB.
D. giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và chéo nhau với AB.
Câu 1: Cho hai đường thẳng a và b cắt nhau. Đường thẳng c song song với a. khẳng định nào sau đây là đúng?
A. b và c chéo nhau
B. b và c cắt nhau
C. b và c chéo nhau hoặc cắt nhau
D. b và c song song với nhau
30/11/2021 0 Lượt xem
Câu 2: Hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên cạnh AC lấy điểm M và trên cạnh BF lấy điểm N sao cho AM/AC = BN/BF = k. Tìm k để MN // DE.


A. k = 1/3
B. k = 3
C. k = 1/2
D. k = 2
30/11/2021 0 Lượt xem
Câu 3: Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?
(1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.
(2) Nếu mặt phẳng (a,b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.
(3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.
A. Chỉ có (1) sai.
B. Chỉ có (2) sai
C. Chỉ có (3) sai
D. (1), (2) và (3) đều sai
30/11/2021 0 Lượt xem
Câu 4: Cho hình chóp S. ABCD, đáy là hình bình hành ABCD, điểm N thuộc cạnh SC sao cho 2NC = NS, M là trọng tâm của tam giác CBD. Phát biểu nào sau đây là đúng?


A. MN song song với SA
B. MN và SA cắt nhau
C. MN và SA chéo nhau
D. MN và SA không đồng phẳng.
30/11/2021 0 Lượt xem
Câu 5: Trong các phát biểu sau, phát biểu nào đúng?
A. Hai đường thẳng không có điểm chung thì song song với nhau
B. Hai đường thẳng không có điểm chung thì chéo nhau
C. Hai đường thẳng phân biệt không cắt nhau thì song song
D. Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau.
30/11/2021 0 Lượt xem
Câu 6: Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
A. AB = CD
B. AB = 3CD
C. 3AB = CD
D. AB = 2CD
30/11/2021 0 Lượt xem

- 0 Lượt thi
- 45 Phút
- 28 Câu hỏi
- Học sinh
Cùng danh mục Chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
- 282
- 0
- 10
-
92 người đang thi
- 315
- 0
- 10
-
86 người đang thi
- 335
- 0
- 24
-
68 người đang thi
- 347
- 0
- 10
-
48 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận