Câu hỏi:

Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

333 Lượt xem
30/11/2021
3.7 7 Đánh giá

A. AB = CD

B. AB = 3CD

C. 3AB = CD

D. AB = 2CD

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt. khẳng định nào sau đây là đúng?

A. ba giao tuyến này đôi một song song

B. ba giao tuyến này hoặc đồng quy hoặc đôi một song song

C. ba giao tuyến này đồng quy

D. ba giao tuyến này đôi một cắt nhau tạo thành một tam giác.

Xem đáp án

30/11/2021 0 Lượt xem

Xem đáp án

30/11/2021 0 Lượt xem

Câu 4:

Cho hình chóp S. ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD. Khẳng định nào sau đây là đúng?

A. MN // PQ với P là giao điểm của SM và AB; Q là giao điểm của SN và AD

B. MN, BD chéo nhau.

C. MN và BD cắt nhau.

D. MN là đường trung bình của tam giác IBD với I là trung điểm của SA.

Xem đáp án

30/11/2021 0 Lượt xem

Câu 6:

Trong các phát biểu sau đây, phát biểu nào sai?

A. hai đường thẳng song song thì đồng phẳng

B. hai đường thẳng không có điểm chung thì chéo nhau

C. hai đường thẳng chéo nhau thì không đồng phẳng

D. Hai đường thẳng cắt nhau thì đồng phẳng

Xem đáp án

30/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Trắc nghiệm Hai đường thẳng chéo nhau và hai đường thẳng song song có đáp án
Thông tin thêm
  • 0 Lượt thi
  • 45 Phút
  • 28 Câu hỏi
  • Học sinh