Câu hỏi: Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
Câu 1: Gọi \(\int {{{2009}^x}\,dx} = F(x) + C\) . Khi đó F(x) là hàm số:
A. \({2009^x}\ln 2009\).
B. \(\dfrac{{{{2009}^x}}}{{\ln 2009}}\).
C. \({2009^x} + 1\).
D. \({2009^x}\).
18/11/2021 2 Lượt xem
Câu 2: Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
A. \( - {\sin ^4}x + C\).
B. \(\dfrac{1}{4}{\sin ^4}x + C\).
C. \( - \dfrac{1}{4}{\sin ^4}x + C\).
D. \({\sin ^4}x + C\).
18/11/2021 1 Lượt xem
18/11/2021 1 Lượt xem
Câu 4: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(u = {x^2} - 2x + 3\) , trục Ox và đường thẳng x = -1 , x =2 bằng :
A. \(\dfrac{1}{3}\)
B. 17
C. 7
D. 9
18/11/2021 1 Lượt xem
Câu 5: Nếu \(\int\limits_a^d {f(x)\,dx = 5\,,\,\,\int\limits_b^d {f(x)\,dx = 2} \,} \) với a < d < b thì \(\int\limits_a^b {f(x)\,dx} \) bằng :
A. 3
B. 2
C. 10
D. 0
18/11/2021 2 Lượt xem
Câu 6: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 594
- 0
- 40
-
32 người đang thi
- 622
- 13
- 40
-
42 người đang thi
- 553
- 3
- 30
-
38 người đang thi
- 531
- 3
- 30
-
79 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận