Câu hỏi: Cho hai số phức \({z_1} =  - 2 + 5i\) và \({z_2} = 1 - i\), số phức \({z_1}-{z_2}\) là:

296 Lượt xem
18/11/2021
3.6 17 Đánh giá

A. -3+6i

B. -1+4i

C. -1+6i

D. -3+4i

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm cặp số thực (x;y) thỏa mãn điều kiện: \((x + y) + (3x + y)i = (3 - x) + (2y + 1)i\)

A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)

B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)

C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)

D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{3}\) và mặt phẳng (P):x + 2y + z - 4 = 0. Viết phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với d.

A. \(\frac{{x + 1}}{5} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)

B. \(\frac{{x - 1}}{5} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)

C. \(\frac{{x - 1}}{5} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 3}}\)

D. \(\frac{{x - 1}}{{ - 5}} = \frac{{y + 1}}{1} = \frac{{z - 1}}{3}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Cho phương trình \(a{z^2} + bz + c = 0\,\,(a \ne 0,\,\,a,\,b,\,c \in R)\,\,\) với \(\Delta  = {b^2} - 4ac\). Nếu \(\Delta  < 0\) thì phương trình có hai nghiệm phức phân biệt \({z_1},\,{z_2}\) được xác định bởi công thức nào sau đây?

A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta  }}{{2a}}\)

B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta  \right|} }}{{2a}}\)

C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta  \right|} }}{{2a}}\)

D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta  \right|} }}{a}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh