Câu hỏi: Cho hàm số f(x) liên tục trên R và \(\int\limits_0^{{\pi ^2}} {f(x)dx = 2018} \), tính \(I = \int\limits_0^\pi  {xf({x^2}} )dx\)

303 Lượt xem
18/11/2021
3.8 14 Đánh giá

A. I = 2017

B. I = 1009

C. I = 2018

D. I = 1008

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z + 3 - 5i = 0\). Giá trị biểu thức \(A = z.\overline z \) là

A. \(\frac{{\sqrt {170} }}{5}.\)

B. \(\frac{{170}}{5}.\)

C. \(\sqrt {\frac{{170}}{5}} .\)

D. \(\frac{{170}}{{25}}.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3: Trong không gian với hệ tọa độ Oxy, cho mặt phẳng \(\left( P \right):x + y - 8 = 0\) và điểm I(-1;-1;0). Mặt cầu tâm I và tiếp xúc với mặt phẳng (P) có phương trình là:

A. \({(x - 1)^2} + {(y - 1)^2} + {z^2} = 50\)

B. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 5\sqrt 2 \)

C. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 50\)

D. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 25\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Tìm công thức sai

A. \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + } } \int\limits_b^c {f(x)dx} .\)

B. \(\int\limits_a^b {f\left( x \right)dx =  - \int\limits_b^a {f(x)dx} } .\)

C. \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx = \int\limits_a^b {f(x)dx - } } \int\limits_a^b {g(x)dx} .\)

D. \(\int\limits_a^a {f(x)dx = 0} \)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh