Câu hỏi: Cho hàm số f(x) liên tục trên R và \(\int\limits_0^{{\pi ^2}} {f(x)dx = 2018} \), tính \(I = \int\limits_0^\pi {xf({x^2}} )dx\)
A. I = 2017
B. I = 1009
C. I = 2018
D. I = 1008
Câu 1: Cho phương trình \(a{z^2} + bz + c = 0\,\,(a \ne 0,\,\,a,\,b,\,c \in R)\,\,\) với \(\Delta = {b^2} - 4ac\). Nếu \(\Delta < 0\) thì phương trình có hai nghiệm phức phân biệt \({z_1},\,{z_2}\) được xác định bởi công thức nào sau đây?
A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta }}{{2a}}\)
B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{a}\)
18/11/2021 1 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{3}\) và mặt phẳng (P):x + 2y + z - 4 = 0. Viết phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với d.
A. \(\frac{{x + 1}}{5} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)
B. \(\frac{{x - 1}}{5} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)
C. \(\frac{{x - 1}}{5} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 3}}\)
D. \(\frac{{x - 1}}{{ - 5}} = \frac{{y + 1}}{1} = \frac{{z - 1}}{3}\)
18/11/2021 1 Lượt xem
Câu 3: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {2; - 1;0} \right),\,B\left( { - 4;3; - 6} \right)\). Tọa độ trung điểm I của đoạn AB là:
A. I(-1;1;3)
B. I(-1;2;-3)
C. I(3;1;-3)
D. I(-1;1;-3)
18/11/2021 1 Lượt xem
Câu 4: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1), đường thẳng \(d:\frac{{x - 2}}{1} = \frac{y}{3} = \frac{{z + 2}}{2}\) và mặt phẳng (P):2x + y - z + 1 = 0. Đường thẳng đi qua A cắt đường thẳng d và song song với (P) có phương trình là:
A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{{ - 5}}\)
B. \(\frac{{x - 1}}{5} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 9}}\)
C. \(\frac{{x - 1}}{9} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 5}}\)
D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{5}\)
18/11/2021 1 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, tọa độ tâm I và bán kính R của mặt cầu có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 5\) là:
A. \(I\left( {2; - 2;0} \right),R = 5\)
B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)
C. \(I\left( {2;3;1} \right),R = 5\)
D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)
18/11/2021 1 Lượt xem
Câu 6: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp
A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)
B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)
C. đổi biến số và đặt \(u = \ln (x + 2)\)
D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 664
- 0
- 40
-
94 người đang thi
- 709
- 13
- 40
-
86 người đang thi
- 631
- 6
- 30
-
37 người đang thi
- 606
- 7
- 30
-
12 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận