Câu hỏi: Cho số phức z thỏa mãn điều kiện \(\frac{{1 - i}}{z} = 1 + i\). Tọa độ điểm M biểu diễn số phức \({\rm{w}} = 2z + 1\) trên mặt phẳng là

358 Lượt xem
18/11/2021
3.7 17 Đánh giá

A. M(2;1)

B. M(1;-2)

C. M(0;-1)

D. M(-2;1)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Cho A, B, C lần lượt là ba điểm biểu diễn số phức \({z_1},\,{z_2},\,{z_3}\) thỏa \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|.\) Mệnh đề nào sau đây là đúng?

A. Tam giác ABC là tam giác đều.

B. O là tâm đường tròn ngoại tiếp tam giác ABC

C. Trọng tâm tam giác ABC là điểm biểu diễn số phức \({z_1} + {z_2} + {z_3}\).

D. O là trọng tâm tam giác ABC

Xem đáp án

18/11/2021 0 Lượt xem

Câu 3: Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z + 3 - 5i = 0\). Giá trị biểu thức \(A = z.\overline z \) là

A. \(\frac{{\sqrt {170} }}{5}.\)

B. \(\frac{{170}}{5}.\)

C. \(\sqrt {\frac{{170}}{5}} .\)

D. \(\frac{{170}}{{25}}.\)

Xem đáp án

18/11/2021 1 Lượt xem

Xem đáp án

18/11/2021 2 Lượt xem

Câu 6: Tìm nguyên hàm của hàm số \(f(x) = x + \cos 2x\).

A. \(\int {f(x)dx = \frac{{{x^2}}}{2} - \frac{1}{2}\sin 2x + C} \)

B. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  - \sin 2x + C.\)

C. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  + \frac{1}{2}sin2x + C.\)

D. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  + \sin 2x + C.\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh