Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{1} = \frac{{z + 1}}{2}\). Mặt phẳng (Q) đi qua điểm M(-3;1;1) và vuông góc với đường thẳng d có phương trình là:

147 Lượt xem
18/11/2021
3.8 15 Đánh giá

A. 2x - y - 2z + 9 = 0

B. - 2x + y + 2z + 9 = 0

C. 2x - y - 2z + 5 = 0

D. - 2x + y + 2z + 5 = 0

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm cặp số thực (x;y) thỏa mãn điều kiện: \((x + y) + (3x + y)i = (3 - x) + (2y + 1)i\)

A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)

B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)

C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)

D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1), đường thẳng \(d:\frac{{x - 2}}{1} = \frac{y}{3} = \frac{{z + 2}}{2}\) và mặt phẳng (P):2x + y - z + 1 = 0. Đường thẳng đi qua A cắt đường thẳng d và song song với (P) có phương trình là:

A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{{ - 5}}\)

B. \(\frac{{x - 1}}{5} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 9}}\)

C. \(\frac{{x - 1}}{9} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 5}}\)

D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{5}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4: Trong không gian với hệ tọa độ Oxyz, tọa độ tâm I và bán kính R của mặt cầu có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 5\) là:

A. \(I\left( {2; - 2;0} \right),R = 5\)

B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)

C. \(I\left( {2;3;1} \right),R = 5\)

D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh