Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{1} = \frac{{z + 1}}{2}\). Mặt phẳng (Q) đi qua điểm M(-3;1;1) và vuông góc với đường thẳng d có phương trình là:

132 Lượt xem
18/11/2021
3.8 15 Đánh giá

A. 2x - y - 2z + 9 = 0

B. - 2x + y + 2z + 9 = 0

C. 2x - y - 2z + 5 = 0

D. - 2x + y + 2z + 5 = 0

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(1;-2;5) và vuông góc với mặt phẳng \((\alpha ):4x - 3y + 2z + 5 = 0\) là:

A. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{2}\)

B. \(\frac{{x - 1}}{{ - 4}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{2}\)

C. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{3} = \frac{{z - 5}}{2}\)

D. \(\frac{{x - 1}}{{ - 4}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{{ - 2}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4: Trong không gian với hệ tọa độ Oxy, mặt phẳng \((P):x - y + 3z - 4 = 0\) có một vectơ pháp tuyến là:

A. \(\overrightarrow n  = (1;1;3)\)

B. \(\overrightarrow n  = ( - 1;3; - 4)\)

C. \(\overrightarrow n  = (1; - 1;3)\)

D. \(\overrightarrow n  = ( - 1; - 1;3)\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 5: Tìm cặp số thực (x;y) thỏa mãn điều kiện: \((x + y) + (3x + y)i = (3 - x) + (2y + 1)i\)

A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)

B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)

C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)

D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Tìm nguyên hàm của hàm số \(f(x) = x + \cos 2x\).

A. \(\int {f(x)dx = \frac{{{x^2}}}{2} - \frac{1}{2}\sin 2x + C} \)

B. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  - \sin 2x + C.\)

C. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  + \frac{1}{2}sin2x + C.\)

D. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  + \sin 2x + C.\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh