Câu hỏi: Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: tâm của (S1) thuộc (S2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S1) và (S2).

184 Lượt xem
18/11/2021
3.8 14 Đánh giá

A. \(V = \pi {R^3}\)

B. \(V = \frac{{\pi {R^3}}}{2}\)

C. \(V = \frac{{5\pi {R^3}}}{{12}}\)

D. \(V = \frac{{2\pi {R^3}}}{5}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Cho A, B, C lần lượt là ba điểm biểu diễn số phức \({z_1},\,{z_2},\,{z_3}\) thỏa \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|.\) Mệnh đề nào sau đây là đúng?

A. Tam giác ABC là tam giác đều.

B. O là tâm đường tròn ngoại tiếp tam giác ABC

C. Trọng tâm tam giác ABC là điểm biểu diễn số phức \({z_1} + {z_2} + {z_3}\).

D. O là trọng tâm tam giác ABC

Xem đáp án

18/11/2021 0 Lượt xem

Câu 3: Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z + 3 - 5i = 0\). Giá trị biểu thức \(A = z.\overline z \) là

A. \(\frac{{\sqrt {170} }}{5}.\)

B. \(\frac{{170}}{5}.\)

C. \(\sqrt {\frac{{170}}{5}} .\)

D. \(\frac{{170}}{{25}}.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Trong không gian với hệ tọa độ Oxyz, tọa độ tâm I và bán kính R của mặt cầu có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 5\) là:

A. \(I\left( {2; - 2;0} \right),R = 5\)

B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)

C. \(I\left( {2;3;1} \right),R = 5\)

D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Tìm nguyên hàm \(I = \int {\frac{{{e^{\ln x}}}}{x}dx} \).

A. \(I = {e^{\ln 2x}} + C\)

B. \(I = {e^{\ln x}} + C\)

C. \(I =  - {e^{\ln x}} + C\)

D. \(I = \frac{{{e^{\ln x}}}}{x} + C\)

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh