Câu hỏi: Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z + 3 - 5i = 0\). Giá trị biểu thức \(A = z.\overline z \) là

232 Lượt xem
18/11/2021
4.0 15 Đánh giá

A. \(\frac{{\sqrt {170} }}{5}.\)

B. \(\frac{{170}}{5}.\)

C. \(\sqrt {\frac{{170}}{5}} .\)

D. \(\frac{{170}}{{25}}.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {3; - 1;1} \right),B\left( {1;2; - 1} \right)\). Mặt cầu có tâm A và đi qua điểm B có phương trình là:

A. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 15\)

B. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 17\)

C. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 17\)

D. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 15\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{3}\) và mặt phẳng (P):x + 2y + z - 4 = 0. Viết phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với d.

A. \(\frac{{x + 1}}{5} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)

B. \(\frac{{x - 1}}{5} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)

C. \(\frac{{x - 1}}{5} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 3}}\)

D. \(\frac{{x - 1}}{{ - 5}} = \frac{{y + 1}}{1} = \frac{{z - 1}}{3}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Tìm nguyên hàm \(I = \int {\frac{{{e^{\ln x}}}}{x}dx} \).

A. \(I = {e^{\ln 2x}} + C\)

B. \(I = {e^{\ln x}} + C\)

C. \(I =  - {e^{\ln x}} + C\)

D. \(I = \frac{{{e^{\ln x}}}}{x} + C\)

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh