Câu hỏi: Tìm công thức sai
A. \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + } } \int\limits_b^c {f(x)dx} .\)
B. \(\int\limits_a^b {f\left( x \right)dx = - \int\limits_b^a {f(x)dx} } .\)
C. \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx = \int\limits_a^b {f(x)dx - } } \int\limits_a^b {g(x)dx} .\)
D. \(\int\limits_a^a {f(x)dx = 0} \)
Câu 1: Tích phân \(\int\limits_1^3 {\frac{{2x - 1}}{{x + 1}}} dx = a + b\ln 2\). Khẳng định nào sau đây đúng?
A. a - b = -7
B. ab = -12
C. a + b = 7
D. \(\frac{a}{b} = - 2\)
18/11/2021 2 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y + 2}}{1} = \frac{{z - 3}}{{ - 1}}\) và \({d_2}:\frac{{x - 3}}{1} = \frac{{y - 1}}{2} = \frac{{z - 5}}{3}\). Phương trình mặt phẳng chứa d1 và d2 là
A. 5x - 4y - z - 16 = 0
B. 5x - 4y + z + 16 = 0
C. 5x + 4y + z - 16 = 0
D. 5x - 4y + z - 16 = 0
18/11/2021 1 Lượt xem
Câu 3: Trong không gian với hệ tọa độ Oxy, cho mặt phẳng \(\left( P \right):x + y - 8 = 0\) và điểm I(-1;-1;0). Mặt cầu tâm I và tiếp xúc với mặt phẳng (P) có phương trình là:
A. \({(x - 1)^2} + {(y - 1)^2} + {z^2} = 50\)
B. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 5\sqrt 2 \)
C. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 50\)
D. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 25\)
18/11/2021 1 Lượt xem
Câu 4: Trong không gian với hệ tọa độ Oxyz, phương trình tổng quát của mặt phẳng \((\alpha )\) qua A(2; - 1;4), B(3;2; - 1) và vuông góc với \(\left( \beta \right):x + y + 2z - 3 = 0\) là
A. 11x - 7y - 2z - 21 = 0
B. 11x + 7y - 2z - 21 = 0
C. 11x + 7y + 2z + 21 = 0
D. 11x - 7y + 2z + 21 = 0
18/11/2021 1 Lượt xem
Câu 5: Cho phương trình \(a{z^2} + bz + c = 0\,\,(a \ne 0,\,\,a,\,b,\,c \in R)\,\,\) với \(\Delta = {b^2} - 4ac\). Nếu \(\Delta < 0\) thì phương trình có hai nghiệm phức phân biệt \({z_1},\,{z_2}\) được xác định bởi công thức nào sau đây?
A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta }}{{2a}}\)
B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{a}\)
18/11/2021 1 Lượt xem
Câu 6: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp
A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)
B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)
C. đổi biến số và đặt \(u = \ln (x + 2)\)
D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 656
- 0
- 40
-
86 người đang thi
- 698
- 13
- 40
-
64 người đang thi
- 622
- 6
- 30
-
47 người đang thi
- 598
- 7
- 30
-
62 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận