Câu hỏi: Trong không gian với hệ tọa độ Oxyz, phương trình tổng quát của mặt phẳng \((\alpha )\) qua A(2; - 1;4), B(3;2; - 1) và vuông góc với \(\left( \beta  \right):x + y + 2z - 3 = 0\) là

188 Lượt xem
18/11/2021
3.5 12 Đánh giá

A. 11x - 7y - 2z - 21 = 0

B. 11x + 7y - 2z - 21 = 0

C. 11x + 7y + 2z + 21 = 0

D. 11x - 7y + 2z + 21 = 0

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm cặp số thực (x;y) thỏa mãn điều kiện: \((x + y) + (3x + y)i = (3 - x) + (2y + 1)i\)

A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)

B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)

C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)

D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4: Trong không gian với hệ tọa độ Oxy, cho mặt phẳng \(\left( P \right):x + y - 8 = 0\) và điểm I(-1;-1;0). Mặt cầu tâm I và tiếp xúc với mặt phẳng (P) có phương trình là:

A. \({(x - 1)^2} + {(y - 1)^2} + {z^2} = 50\)

B. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 5\sqrt 2 \)

C. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 50\)

D. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 25\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Cho phương trình \(a{z^2} + bz + c = 0\,\,(a \ne 0,\,\,a,\,b,\,c \in R)\,\,\) với \(\Delta  = {b^2} - 4ac\). Nếu \(\Delta  < 0\) thì phương trình có hai nghiệm phức phân biệt \({z_1},\,{z_2}\) được xác định bởi công thức nào sau đây?

A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta  }}{{2a}}\)

B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta  \right|} }}{{2a}}\)

C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta  \right|} }}{{2a}}\)

D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta  \right|} }}{a}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh