Câu hỏi: Cho A, B, C lần lượt là ba điểm biểu diễn số phức \({z_1},\,{z_2},\,{z_3}\) thỏa \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|.\) Mệnh đề nào sau đây là đúng?

231 Lượt xem
18/11/2021
3.7 19 Đánh giá

A. Tam giác ABC là tam giác đều.

B. O là tâm đường tròn ngoại tiếp tam giác ABC

C. Trọng tâm tam giác ABC là điểm biểu diễn số phức \({z_1} + {z_2} + {z_3}\).

D. O là trọng tâm tam giác ABC

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Tìm nguyên hàm của hàm số \(f(x) = x + \cos 2x\).

A. \(\int {f(x)dx = \frac{{{x^2}}}{2} - \frac{1}{2}\sin 2x + C} \)

B. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  - \sin 2x + C.\)

C. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  + \frac{1}{2}sin2x + C.\)

D. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  + \sin 2x + C.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1), đường thẳng \(d:\frac{{x - 2}}{1} = \frac{y}{3} = \frac{{z + 2}}{2}\) và mặt phẳng (P):2x + y - z + 1 = 0. Đường thẳng đi qua A cắt đường thẳng d và song song với (P) có phương trình là:

A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{{ - 5}}\)

B. \(\frac{{x - 1}}{5} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 9}}\)

C. \(\frac{{x - 1}}{9} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 5}}\)

D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{5}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Tìm nguyên hàm \(I = \int {\frac{{{e^{\ln x}}}}{x}dx} \).

A. \(I = {e^{\ln 2x}} + C\)

B. \(I = {e^{\ln x}} + C\)

C. \(I =  - {e^{\ln x}} + C\)

D. \(I = \frac{{{e^{\ln x}}}}{x} + C\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 6: Tìm công thức sai

A. \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + } } \int\limits_b^c {f(x)dx} .\)

B. \(\int\limits_a^b {f\left( x \right)dx =  - \int\limits_b^a {f(x)dx} } .\)

C. \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx = \int\limits_a^b {f(x)dx - } } \int\limits_a^b {g(x)dx} .\)

D. \(\int\limits_a^a {f(x)dx = 0} \)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh