Câu hỏi: Tìm nguyên hàm \(I = \int {\frac{{{e^{\ln x}}}}{x}dx} \).
A. \(I = {e^{\ln 2x}} + C\)
B. \(I = {e^{\ln x}} + C\)
C. \(I = - {e^{\ln x}} + C\)
D. \(I = \frac{{{e^{\ln x}}}}{x} + C\)
Câu 1: Tìm công thức sai
A. \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + } } \int\limits_b^c {f(x)dx} .\)
B. \(\int\limits_a^b {f\left( x \right)dx = - \int\limits_b^a {f(x)dx} } .\)
C. \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx = \int\limits_a^b {f(x)dx - } } \int\limits_a^b {g(x)dx} .\)
D. \(\int\limits_a^a {f(x)dx = 0} \)
18/11/2021 1 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{1} = \frac{{z + 1}}{2}\). Mặt phẳng (Q) đi qua điểm M(-3;1;1) và vuông góc với đường thẳng d có phương trình là:
A. 2x - y - 2z + 9 = 0
B. - 2x + y + 2z + 9 = 0
C. 2x - y - 2z + 5 = 0
D. - 2x + y + 2z + 5 = 0
18/11/2021 0 Lượt xem
Câu 3: Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z. 61970d9cad726.jpg)
A. Phần thực là 3 và phần ảo là −4.
B. Phần thực là −4 và phần ảo là 3i.
C. Phần thực là −4 và phần ảo là 3.
D. Phần thực là 3 và phần ảo là −4i.
18/11/2021 1 Lượt xem
Câu 4: Tìm cặp số thực (x;y) thỏa mãn điều kiện: \((x + y) + (3x + y)i = (3 - x) + (2y + 1)i\)
A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)
B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)
C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)
D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)
18/11/2021 1 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2) và hai đường thẳng \(d:\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}};\) và \(d':\left\{ \begin{array}{l} x = 1 + t\\ y = - 1 - 2t\\ z = 2 + t \end{array} \right.\) . Phương trình mặt phẳng (P) đi qua A đồng thời song song với d và d' là :
A. 2x + 3y + 5z - 13 = 0
B. 2x + 6y + 10z - 11 = 0
C. x + 3y + 5z - 13 = 0
D. x + 3y + 5z + 13 = 0
18/11/2021 2 Lượt xem
Câu 6: Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 2;0; - 2), B(0;3; - 3). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ điểm B đến mặt phẳng (P) là lớn nhất. Khoảng cách từ gốc tọa độ đến mặt phẳng (P) bằng:
A. \(\frac{2}{{\sqrt {14} }}\)
B. \(\frac{3}{{\sqrt {14} }}\)
C. \(\frac{4}{{\sqrt {14} }}\)
D. \(\frac{5}{{\sqrt {14} }}\)
18/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 594
- 0
- 40
-
62 người đang thi
- 624
- 13
- 40
-
65 người đang thi
- 553
- 3
- 30
-
45 người đang thi
- 532
- 3
- 30
-
54 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận