Câu hỏi: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp
A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)
B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)
C. đổi biến số và đặt \(u = \ln (x + 2)\)
D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)
Câu 1: Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 2;0; - 2), B(0;3; - 3). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ điểm B đến mặt phẳng (P) là lớn nhất. Khoảng cách từ gốc tọa độ đến mặt phẳng (P) bằng:
A. \(\frac{2}{{\sqrt {14} }}\)
B. \(\frac{3}{{\sqrt {14} }}\)
C. \(\frac{4}{{\sqrt {14} }}\)
D. \(\frac{5}{{\sqrt {14} }}\)
18/11/2021 1 Lượt xem
Câu 2: Tìm nguyên hàm của hàm số \(f(x) = x + \cos 2x\).
A. \(\int {f(x)dx = \frac{{{x^2}}}{2} - \frac{1}{2}\sin 2x + C} \)
B. \(\int {f(x)dx = \frac{{{x^2}}}{2}} - \sin 2x + C.\)
C. \(\int {f(x)dx = \frac{{{x^2}}}{2}} + \frac{1}{2}sin2x + C.\)
D. \(\int {f(x)dx = \frac{{{x^2}}}{2}} + \sin 2x + C.\)
18/11/2021 1 Lượt xem
Câu 3: Thể tích khối tròn xoay có được do hình phẳng giới hạn bởi các đường \(y = \sqrt {\ln x} \), y = 0, x = 2 quay xung quanh trục hoành là
A. \(2\pi \left( {\ln 2 - 1} \right)\)
B. \(2\pi \ln 2\)
C. \(\pi \left( {2\ln 2 - 1} \right)\)
D. \(\pi \left( {\ln 2 + 1} \right)\)
18/11/2021 0 Lượt xem
Câu 4: Trong không gian với hệ tọa độ Oxy, mặt phẳng \((P):x - y + 3z - 4 = 0\) có một vectơ pháp tuyến là:
A. \(\overrightarrow n = (1;1;3)\)
B. \(\overrightarrow n = ( - 1;3; - 4)\)
C. \(\overrightarrow n = (1; - 1;3)\)
D. \(\overrightarrow n = ( - 1; - 1;3)\)
18/11/2021 2 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, một vectơ chỉ phương của đường thẳng d: \(\left\{ \begin{array}{l} x = t\\ y = 2\\ z = 1 - 3t \end{array} \right.\) (t là tham số) có tọa độ là:
A. \(\overrightarrow a = \left( {1;2; - 3} \right)\)
B. \(\overrightarrow a = \left( {1;0; - 3} \right)\)
C. \(\overrightarrow a = \left( {0;2; 1} \right)\)
D. \(\overrightarrow a = \left( {1;2;1} \right)\)
18/11/2021 1 Lượt xem
Câu 6: Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: tâm của (S1) thuộc (S2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S1) và (S2).
A. \(V = \pi {R^3}\)
B. \(V = \frac{{\pi {R^3}}}{2}\)
C. \(V = \frac{{5\pi {R^3}}}{{12}}\)
D. \(V = \frac{{2\pi {R^3}}}{5}\)
18/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 594
- 0
- 40
-
49 người đang thi
- 624
- 13
- 40
-
71 người đang thi
- 553
- 3
- 30
-
78 người đang thi
- 532
- 3
- 30
-
43 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận