Câu hỏi: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

274 Lượt xem
18/11/2021
3.8 15 Đánh giá

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Thể tích khối tròn xoay có được do hình phẳng giới hạn bởi  các đường \(y = \sqrt {\ln x} \), y = 0, x = 2 quay xung quanh trục hoành là

A. \(2\pi \left( {\ln 2 - 1} \right)\)

B. \(2\pi \ln 2\)

C. \(\pi \left( {2\ln 2 - 1} \right)\)

D. \(\pi \left( {\ln 2 + 1} \right)\)

Xem đáp án

18/11/2021 0 Lượt xem

Câu 2: Tìm nguyên hàm \(I = \int {\frac{{{e^{\ln x}}}}{x}dx} \).

A. \(I = {e^{\ln 2x}} + C\)

B. \(I = {e^{\ln x}} + C\)

C. \(I =  - {e^{\ln x}} + C\)

D. \(I = \frac{{{e^{\ln x}}}}{x} + C\)

Xem đáp án

18/11/2021 2 Lượt xem

Xem đáp án

18/11/2021 2 Lượt xem

Câu 5: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{3}\) và mặt phẳng (P):x + 2y + z - 4 = 0. Viết phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với d.

A. \(\frac{{x + 1}}{5} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)

B. \(\frac{{x - 1}}{5} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)

C. \(\frac{{x - 1}}{5} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 3}}\)

D. \(\frac{{x - 1}}{{ - 5}} = \frac{{y + 1}}{1} = \frac{{z - 1}}{3}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x\) và y = x bằng

A. \(\frac{{13}}{4}.\)

B. \(\frac{{7}}{4}.\)

C. \(\frac{{9}}{4}.\)

D. \(\frac{{9}}{2}.\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh