Câu hỏi: Tìm a để hàm số \(f(x) = \left\{ \begin{array}{l} x\cot (2x),\,\,x \ne 0,\left| x \right| < \frac{\pi }{2}\\ a,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) liên tục trên \(( - \frac{\pi }{2},\frac{\pi }{2})R\)
210 Lượt xem
30/08/2021
3.6 7 Đánh giá
A. a = 1/2
B. a = 1/4
C. a = 0
D. Đáp án khác
Đăng Nhập
để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} {(\cos x)^{1/(1 - \cos x)}}\)
A. \(e^{-1}\)
B. 0
C. \(\frac{1}{5}\)
D. Đáp án khác
Xem đáp án
30/08/2021 2 Lượt xem
Câu 2: Tìm a để hàm số \(f(x) = \left\{ \begin{array}{l} (\arcsin x)\cot x,\,x \ne 0\\ \,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) liên tục trên (-1,1).
A. a = 0
B. \(a = \frac{1}{4}\)
C. a = 1
D. \(a = \frac{-1}{4}\)
Xem đáp án
30/08/2021 1 Lượt xem
Câu 3: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} {(1 - {\tan ^2}x)^{1/{{\sin }^2}(2x)}}\)
A. 1
B. e1/4
C. 0
D. e-1/4
Xem đáp án
30/08/2021 1 Lượt xem
Câu 4: Tìm điểm gián đoạn của hàm số \(f(x) = \frac{x}{{\cos x}}\) và cho biết nó thuộc loại nào?
A. x = 0, loại 2
B. \(x = \frac{\pi }{2} + n\pi\) , loại 2
C. \(x = \frac{\pi }{2} + n\pi\) , khử được
D. \(x= \pi\) , điểm nhảy
Xem đáp án
30/08/2021 1 Lượt xem
Câu 5: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \pi /4} \cot 2x.\cot (\frac{\pi }{4} - x)\)
A. 2
B. 1
C. 1/2
D. 0
Xem đáp án
30/08/2021 1 Lượt xem
Câu 6: Tính giới hạn sau: \(\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{{n^2}}}{{n + 1}} - \frac{{{n^3}}}{{{n^2} + 1}}} \right)\)
A. 0
B. -1
C. 1/5
D. Đáp án khác
Xem đáp án
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
Thông tin thêm
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 568
- 30
- 22
-
16 người đang thi
- 662
- 23
- 25
-
42 người đang thi
- 286
- 12
- 25
-
45 người đang thi
- 924
- 18
- 25
-
81 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận