Câu hỏi:  Tìm a để hàm số \(f(x) = \left\{ \begin{array}{l} x\cot (2x),\,\,x \ne 0,\left| x \right| < \frac{\pi }{2}\\ a,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) liên tục trên \(( - \frac{\pi }{2},\frac{\pi }{2})R\)

188 Lượt xem
30/08/2021
3.6 7 Đánh giá

A. a = 1/2

B. a = 1/4

C. a = 0

D. Đáp án khác

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có \({{f'}_ + }(0)\) là: 

A. \({{f'}_ + }(0) = - \infty \)

B. \({{f'}_ + }(0) = 1\)

C. \({{f'}_ + }(0) = + \infty \)

D. Đáp án khác

Xem đáp án

30/08/2021 1 Lượt xem

Câu 4: Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có x'(t) là:

A. \(- 3a{\sin ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)

B. \( - {\cos ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)

C. \(- 3a{\cos ^2}t \ne 0,\forall t \in (0,\frac{\pi }{2})\)

D. \(- 3a{\cos ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
Thông tin thêm
  • 15 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên