Câu hỏi: Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có \({{f'}_ + }(0)\) là:
A. \({{f'}_ + }(0) = - \infty \)
B. \({{f'}_ + }(0) = 1\)
C. \({{f'}_ + }(0) = + \infty \)
D. Đáp án khác
Câu 1: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[5]{{32 + x}} - 2}}{x}\)
A. 0
B. \(\frac{1}{{80}}\)
C. \(-\frac{4}{{3}}\)
D. \(\frac{-1}{{80}}\)
30/08/2021 2 Lượt xem
Câu 2: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \pi /4} \cot 2x.\cot (\frac{\pi }{4} - x)\)
A. 2
B. 1
C. 1/2
D. 0
30/08/2021 1 Lượt xem
Câu 3: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} {(\cos x)^{1/(1 - \cos x)}}\)
A. \(e^{-1}\)
B. 0
C. \(\frac{1}{5}\)
D. Đáp án khác
30/08/2021 2 Lượt xem
Câu 4: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{{2^n} + {3^{ - n}}}}{{{2^{ - n}} - {3^n}}}\)
A. \(\infty\)
B. Đáp án khác
C. 0
D. \(\frac{1}{2}\)
30/08/2021 1 Lượt xem
Câu 5: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } {\left( {{e^{1/x}} + \frac{1}{x}} \right)^x}\)
A. e
B. ln 2 - e
C. e2
D. e-2
30/08/2021 1 Lượt xem
Câu 6: Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có x'(t) là:
A. \(- 3a{\sin ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)
B. \( - {\cos ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)
C. \(- 3a{\cos ^2}t \ne 0,\forall t \in (0,\frac{\pi }{2})\)
D. \(- 3a{\cos ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)
30/08/2021 1 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 518
- 30
- 22
-
58 người đang thi
- 621
- 23
- 25
-
42 người đang thi
- 249
- 12
- 25
-
58 người đang thi
- 884
- 18
- 25
-
82 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận