Câu hỏi: Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có \({{f'}_ + }(0)\) là:
A. \({{f'}_ + }(0) = - \infty \)
B. \({{f'}_ + }(0) = 1\)
C. \({{f'}_ + }(0) = + \infty \)
D. Đáp án khác
Câu 1: Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có y'(x) là:
A. \(\frac{b}{a}\tan t\)
B. \(-\frac{b}{a}\tan t\)
C. \(3b \sin^2t\)
D. \(- {\cos ^2}t\,\sin t\)
30/08/2021 2 Lượt xem
Câu 2: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} {(1 - {\tan ^2}x)^{1/{{\sin }^2}(2x)}}\)
A. 1
B. e1/4
C. 0
D. e-1/4
30/08/2021 1 Lượt xem
Câu 3: Tìm điểm gián đoạn của hàm số \(f(x) = \frac{x}{{\cos x}}\) và cho biết nó thuộc loại nào?
A. x = 0, loại 2
B. \(x = \frac{\pi }{2} + n\pi\) , loại 2
C. \(x = \frac{\pi }{2} + n\pi\) , khử được
D. \(x= \pi\) , điểm nhảy
30/08/2021 1 Lượt xem
Câu 4: Tìm điểm gián đoạn của hàm số \(f(x) = \frac{1}{{\ln \left| {x - 1} \right|}}\)
A. \(x = \frac{\pi }{2} + n\pi \)
B. x = 0, x = 1, x = 2
C. x = 0, x = 1
D. x = e
30/08/2021 2 Lượt xem
Câu 5: Tính giới hạn sau: \(\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{{n^2}}}{{n + 1}} - \frac{{{n^3}}}{{{n^2} + 1}}} \right)\)
A. 0
B. -1
C. 1/5
D. Đáp án khác
30/08/2021 2 Lượt xem
Câu 6: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{{2^n} + {3^{ - n}}}}{{{2^{ - n}} - {3^n}}}\)
A. \(\infty\)
B. Đáp án khác
C. 0
D. \(\frac{1}{2}\)
30/08/2021 1 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 541
- 30
- 22
-
21 người đang thi
- 636
- 23
- 25
-
78 người đang thi
- 262
- 12
- 25
-
53 người đang thi
- 897
- 18
- 25
-
15 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận