Câu hỏi: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } {\left( {{e^{1/x}} + \frac{1}{x}} \right)^x}\)
A. e
B. ln 2 - e
C. e2
D. e-2
Câu 1: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{{2^n} + {3^{ - n}}}}{{{2^{ - n}} - {3^n}}}\)
A. \(\infty\)
B. Đáp án khác
C. 0
D. \(\frac{1}{2}\)
30/08/2021 1 Lượt xem
Câu 2: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} {(1 - {\tan ^2}x)^{1/{{\sin }^2}(2x)}}\)
A. 1
B. e1/4
C. 0
D. e-1/4
30/08/2021 1 Lượt xem
Câu 3: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[5]{{32 + x}} - 2}}{x}\)
A. 0
B. \(\frac{1}{{80}}\)
C. \(-\frac{4}{{3}}\)
D. \(\frac{-1}{{80}}\)
30/08/2021 2 Lượt xem
Câu 4: Đạo hàm cấp n của hàm sin(ax) là:
A. \({a^n}.\sin (ax + n\frac{\pi }{2})\)
B. \({a^n}.\sin (ax + \frac{\pi }{2})\)
C. \({a^n}.\sin (x + n\frac{\pi }{2})\)
D. Kết quả khác
30/08/2021 2 Lượt xem
Câu 5: Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có y'(t) là:
A. \(- {\cos ^2}t\sin t\)
B. \(3b{\sin ^2}t\)
C. \(-3b{\sin ^2}t\cos t\)
D. \(3b{\sin ^2}t\cos t\)
30/08/2021 2 Lượt xem
Câu 6: Hàm số \(f'(x) = {x^2} - 3\left| x \right| + 2\) có f'(0) là:
A. f'(0) = -1
B. f'(0) = 3
C. f'(0) = 0
D. Không tồn tại
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 541
- 30
- 22
-
91 người đang thi
- 636
- 23
- 25
-
38 người đang thi
- 262
- 12
- 25
-
91 người đang thi
- 897
- 18
- 25
-
19 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận