Câu hỏi: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{{x^2} - x - 2}}\)
101 Lượt xem
30/08/2021
3.4 5 Đánh giá
A. e
B. \(\frac{4}{3}\)
C. 0
D. \(-\frac{4}{3}\)
Đăng Nhập
để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } {\left( {{e^{1/x}} + \frac{1}{x}} \right)^x}\)
A. e
B. ln 2 - e
C. e2
D. e-2
Xem đáp án
30/08/2021 1 Lượt xem
Câu 2: Tìm điểm gián đoạn của hàm số \(y = {e^{ - 1/\left| x \right|}}\) và cho biết nó thuộc loại nào?
A. x = 0, khử được
B. \(x = \pi\) , điểm nhảy
C. x = e, loại 1
D. x = 0, loại 2
Xem đáp án
30/08/2021 2 Lượt xem
Câu 3: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{{{(n + 1)}^4} - {{(n - 1)}^4}}}{{{{({n^2} + 1)}^2} - {{({n^2} - 1)}^2}}}\)
A. \(\frac{1}{5}\)
B. -1
C. \(+ \infty \)
D. 0
Xem đáp án
30/08/2021 2 Lượt xem
Xem đáp án
30/08/2021 1 Lượt xem
Câu 5: Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có \({{f'}_ + }(0)\) là:
A. \({{f'}_ + }(0) = - \infty \)
B. \({{f'}_ + }(0) = 1\)
C. \({{f'}_ + }(0) = + \infty \)
D. Đáp án khác
Xem đáp án
30/08/2021 1 Lượt xem
Câu 6: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{\ln ({n^2} - n + 1)}}{{\ln ({n^{10}} + n + 1)}}\)
A. 0
B. Đáp án khác
C. \(\frac{1}{2}\)
D. \(\frac{1}{5}\)
Xem đáp án
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
Thông tin thêm
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 541
- 30
- 22
-
89 người đang thi
- 636
- 23
- 25
-
88 người đang thi
- 262
- 12
- 25
-
18 người đang thi
- 897
- 18
- 25
-
85 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận