Câu hỏi: Tìm điểm gián đoạn của hàm số \(f(x) = \frac{x}{{\cos x}}\) và cho biết nó thuộc loại nào?
A. x = 0, loại 2
B. \(x = \frac{\pi }{2} + n\pi\) , loại 2
C. \(x = \frac{\pi }{2} + n\pi\) , khử được
D. \(x= \pi\) , điểm nhảy
30/08/2021 1 Lượt xem
Câu 2: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{{{(n + 1)}^4} - {{(n - 1)}^4}}}{{{{({n^2} + 1)}^2} - {{({n^2} - 1)}^2}}}\)
A. \(\frac{1}{5}\)
B. -1
C. \(+ \infty \)
D. 0
30/08/2021 2 Lượt xem
Câu 3: Tìm điểm gián đoạn của hàm số \(f(x) = \frac{1}{{\ln \left| {x - 1} \right|}}\)
A. \(x = \frac{\pi }{2} + n\pi \)
B. x = 0, x = 1, x = 2
C. x = 0, x = 1
D. x = e
30/08/2021 2 Lượt xem
Câu 4: Hàm số \(f'(x) = {x^2} - 3\left| x \right| + 2\) có f'(0) là:
A. f'(0) = -1
B. f'(0) = 3
C. f'(0) = 0
D. Không tồn tại
30/08/2021 2 Lượt xem
Câu 5: Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có \({{f'}_ + }(0)\) là:
A. \({{f'}_ + }(0) = - \infty \)
B. \({{f'}_ + }(0) = 1\)
C. \({{f'}_ + }(0) = + \infty \)
D. Đáp án khác
30/08/2021 1 Lượt xem
Câu 6: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} {(\cos x)^{1/(1 - \cos x)}}\)
A. \(e^{-1}\)
B. 0
C. \(\frac{1}{5}\)
D. Đáp án khác
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 541
- 30
- 22
-
43 người đang thi
- 636
- 23
- 25
-
47 người đang thi
- 262
- 12
- 25
-
11 người đang thi
- 897
- 18
- 25
-
92 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận