Câu hỏi: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} {(1 - {\tan ^2}x)^{1/{{\sin }^2}(2x)}}\)
A. 1
B. e1/4
C. 0
D. e-1/4
Câu 1: Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có x'(t) là:
A. \(- 3a{\sin ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)
B. \( - {\cos ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)
C. \(- 3a{\cos ^2}t \ne 0,\forall t \in (0,\frac{\pi }{2})\)
D. \(- 3a{\cos ^2}t\sin t \ne 0,\forall t \in (0,\frac{\pi }{2})\)
30/08/2021 1 Lượt xem
Câu 2: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{{x^2} - x - 2}}\)
A. e
B. \(\frac{4}{3}\)
C. 0
D. \(-\frac{4}{3}\)
30/08/2021 2 Lượt xem
Câu 3: Tìm điểm gián đoạn của hàm số \(y = {e^{ - 1/\left| x \right|}}\) và cho biết nó thuộc loại nào?
A. x = 0, khử được
B. \(x = \pi\) , điểm nhảy
C. x = e, loại 1
D. x = 0, loại 2
30/08/2021 2 Lượt xem
Câu 4: Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có y'(x) là:
A. \(\frac{b}{a}\tan t\)
B. \(-\frac{b}{a}\tan t\)
C. \(3b \sin^2t\)
D. \(- {\cos ^2}t\,\sin t\)
30/08/2021 2 Lượt xem
Câu 5: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{{{(n + 1)}^4} - {{(n - 1)}^4}}}{{{{({n^2} + 1)}^2} - {{({n^2} - 1)}^2}}}\)
A. \(\frac{1}{5}\)
B. -1
C. \(+ \infty \)
D. 0
30/08/2021 2 Lượt xem
Câu 6: Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có y'(t) là:
A. \(- {\cos ^2}t\sin t\)
B. \(3b{\sin ^2}t\)
C. \(-3b{\sin ^2}t\cos t\)
D. \(3b{\sin ^2}t\cos t\)
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 568
- 30
- 22
-
69 người đang thi
- 662
- 23
- 25
-
69 người đang thi
- 286
- 12
- 25
-
27 người đang thi
- 924
- 18
- 25
-
38 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận