Câu hỏi: Hàm số \(f(x) = \left\{ \begin{array}{l} {x^2}\sin \left( {\frac{1}{x}} \right),\,x \ne 0\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có f'(0) là:
A. f'(0) = 1
B. Không tồn tại
C. \(f'\left( 0 \right){\rm{ }} = {\rm{ }}\infty\)
D. \(f'\left( 0 \right){\rm{ }} =0\)
Câu 1: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{\ln ({n^2} - n + 1)}}{{\ln ({n^{10}} + n + 1)}}\)
A. 0
B. Đáp án khác
C. \(\frac{1}{2}\)
D. \(\frac{1}{5}\)
30/08/2021 2 Lượt xem
Câu 2: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } {\left( {{e^{1/x}} + \frac{1}{x}} \right)^x}\)
A. e
B. ln 2 - e
C. e2
D. e-2
30/08/2021 1 Lượt xem
Câu 3: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \infty } \frac{{{2^n} + {3^{ - n}}}}{{{2^{ - n}} - {3^n}}}\)
A. \(\infty\)
B. Đáp án khác
C. 0
D. \(\frac{1}{2}\)
30/08/2021 1 Lượt xem
Câu 4: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \pi /4} \cot 2x.\cot (\frac{\pi }{4} - x)\)
A. 2
B. 1
C. 1/2
D. 0
30/08/2021 1 Lượt xem
Câu 5: Cho hàm số \(y = 1 + {x^2}\) . Khẳng định nào sau đây đúng nhất?
A. Hàm số đồng biến trên \((1, + \infty )\) và nghịch biến \((- \infty;1 )\)
B. Hàm số có điểm cực đại là (0,1)
C. Hàm số có điểm cực tiểu là (0,1)
D. Hàm số luôn đồng biến 1
30/08/2021 2 Lượt xem
Câu 6: Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có y'(t) là:
A. \(- {\cos ^2}t\sin t\)
B. \(3b{\sin ^2}t\)
C. \(-3b{\sin ^2}t\cos t\)
D. \(3b{\sin ^2}t\cos t\)
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 568
- 30
- 22
-
71 người đang thi
- 662
- 23
- 25
-
62 người đang thi
- 286
- 12
- 25
-
11 người đang thi
- 924
- 18
- 25
-
73 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận