Câu hỏi: Tìm điểm gián đoạn của hàm số \(y = {e^{ - 1/\left| x \right|}}\) và cho biết nó thuộc loại nào?
A. x = 0, khử được
B. \(x = \pi\) , điểm nhảy
C. x = e, loại 1
D. x = 0, loại 2
Câu 1: Tìm điểm gián đoạn của hàm số \(f(x) = \frac{1}{{\ln \left| {x - 1} \right|}}\)
A. \(x = \frac{\pi }{2} + n\pi \)
B. x = 0, x = 1, x = 2
C. x = 0, x = 1
D. x = e
30/08/2021 2 Lượt xem
Câu 2: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \pi /4} \cot 2x.\cot (\frac{\pi }{4} - x)\)
A. 2
B. 1
C. 1/2
D. 0
30/08/2021 1 Lượt xem
Câu 3: Hàm số \(f'(x) = {x^2} - 3\left| x \right| + 2\) có f'(0) là:
A. f'(0) = -1
B. f'(0) = 3
C. f'(0) = 0
D. Không tồn tại
30/08/2021 2 Lượt xem
Câu 4: Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có \({{f'}_ + }(0)\) là:
A. \({{f'}_ + }(0) = - \infty \)
B. \({{f'}_ + }(0) = 1\)
C. \({{f'}_ + }(0) = + \infty \)
D. Đáp án khác
30/08/2021 1 Lượt xem
Câu 5: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[5]{{32 + x}} - 2}}{x}\)
A. 0
B. \(\frac{1}{{80}}\)
C. \(-\frac{4}{{3}}\)
D. \(\frac{-1}{{80}}\)
30/08/2021 2 Lượt xem
Câu 6: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{{x^2} - x - 2}}\)
A. e
B. \(\frac{4}{3}\)
C. 0
D. \(-\frac{4}{3}\)
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
- 15 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 568
- 30
- 22
-
78 người đang thi
- 662
- 23
- 25
-
46 người đang thi
- 286
- 12
- 25
-
20 người đang thi
- 924
- 18
- 25
-
21 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận