Câu hỏi: Tìm điểm gián đoạn của hàm số \(y = {e^{ - 1/\left| x \right|}}\) và cho biết nó thuộc loại nào?

158 Lượt xem
30/08/2021
3.4 7 Đánh giá

A. x = 0, khử được

B. \(x = \pi\) , điểm nhảy

C. x = e, loại 1 

D. x = 0, loại 2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm điểm gián đoạn của hàm số \(f(x) = \frac{1}{{\ln \left| {x - 1} \right|}}\)

A. \(x = \frac{\pi }{2} + n\pi \)

B. x = 0, x = 1, x = 2

C. x = 0, x = 1

D. x = e

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Hàm số \(f'(x) = {x^2} - 3\left| x \right| + 2\) có f'(0) là:

A. f'(0) = -1

B. f'(0) = 3

C. f'(0) = 0

D. Không tồn tại

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có \({{f'}_ + }(0)\) là: 

A. \({{f'}_ + }(0) = - \infty \)

B. \({{f'}_ + }(0) = 1\)

C. \({{f'}_ + }(0) = + \infty \)

D. Đáp án khác

Xem đáp án

30/08/2021 1 Lượt xem

Câu 5: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[5]{{32 + x}} - 2}}{x}\)

A. 0

B. \(\frac{1}{{80}}\)

C. \(-\frac{4}{{3}}\)

D. \(\frac{-1}{{80}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 3
Thông tin thêm
  • 15 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên