Câu hỏi: Tính tích phân suy rộng \(\int\limits_{ - 1}^1 {\frac{{dx}}{{(4 - x)\sqrt {1 - {x^2}} }}}\)
A. \(\frac{{ - \pi }}{{\sqrt {15} }}\)
B. \(\frac{{ \pi }}{{\sqrt {15} }}\)
C. \(+\infty\)
D. Đáp án khác
Câu 1: Tính tích phân suy rộng \(\int\limits_0^{ + \infty } {\frac{1}{{{e^x} + \sqrt {{e^x}} }}} dx\)
A. \(2ln2\)
B. \(1- 2ln2\)
C. \(1-ln2\)
D. \(2-2ln2\)
30/08/2021 1 Lượt xem
Câu 2: Cho \(S = \sum\limits_{n = 1}^\infty {\frac{\pi }{{n(n + 1)}}}\) . Chọn phát biểu đúng:
A. \(S=\pi\)
B. không tồn tại S
C. \(S = \frac{2}{\pi }\)
D. S = 0
30/08/2021 1 Lượt xem
Câu 3: Bán kính hội tụ của chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{{5^n}}}} \) là:
A. Kết quả khác
B. r = 1/5
C. r = 3
D. r = 5
30/08/2021 2 Lượt xem
30/08/2021 1 Lượt xem
Câu 5: Tính tích phân suy rộng \(\int\limits_1^{ + \infty } {\frac{1}{{x({{\ln }^2}x + 1)}}} dx\)
A. \(\frac{\pi }{2}\)
B. \(-\frac{\pi }{2}\)
C. 0
D. \(2ln2\)
30/08/2021 1 Lượt xem
Câu 6: Mệnh đề nào dưới đây đúng:
A. \((\forall x \in \left[ {a,b} \right])f(x) \ge 0\& \exists {x_0} \in \left[ {a,b} \right]f({x_0}) > 0 \Rightarrow \int\limits_a^b {f(x)dx \ge 0} \)
B. \(\exists {x_0} \in \left[ {a,b} \right]:f({x_0}) > 0 \Rightarrow \int\limits_a^b {f(x)dx > 0} \)
C. \((\forall x \in \left[ {a,b} \right])f(x) \ge 0\& \exists {x_0} \in \left[ {a,b} \right]f({x_0}) > 0 \Rightarrow \int\limits_a^b {f(x)dx > 0} \)
D. \((\forall x \in \left[ {a,b} \right])f(x) \ge 0\)
30/08/2021 1 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 1
- 30 Lượt thi
- 30 Phút
- 22 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 có đáp án
- 636
- 23
- 25
-
98 người đang thi
- 298
- 15
- 25
-
18 người đang thi
- 262
- 12
- 25
-
39 người đang thi
- 897
- 18
- 25
-
38 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận