Câu hỏi: Tính nguyên hàm \(\int {{x^2}\sqrt {{x^3} + 5} } \,dx\) ta được kết quả là :
A. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
B. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
C. \(2{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
D. \(2{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
Câu 1: Gọi \(\int {{{2009}^x}\,dx} = F(x) + C\) . Khi đó F(x) là hàm số:
A. \({2009^x}\ln 2009\).
B. \(\dfrac{{{{2009}^x}}}{{\ln 2009}}\).
C. \({2009^x} + 1\).
D. \({2009^x}\).
18/11/2021 2 Lượt xem
Câu 2: Giả sử \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \ln K} \). Giá trị của K là:
A. 1
B. 3
C. 80
D. 9
18/11/2021 1 Lượt xem
Câu 3: Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :
A. \(S = \pi \).
B. \(S = 2\pi \).
C. \(S = \dfrac{\pi }{2}\).
D. Cả 3 phương án trên đều sai.
18/11/2021 2 Lượt xem
Câu 4: Trong các mệnh đề sau, mệnh đề nào đúng ?
A. Hàm số \(y = \dfrac{1}{x}\) có nguyên hàm trên \(( - \infty ; + \infty )\).
B. \(3{x^2}\) là một nguyên hàm của \({x^3}\) trên \(( - \infty ; + \infty )\).
C. Hàm số \(y = |x|\) có nguyên hàm trên \(( - \infty ; + \infty )\).
D. \(\dfrac{1}{x} + C\) là họ nguyên hàm của lnx trên \((0; + \infty )\).
18/11/2021 2 Lượt xem
Câu 5: Trong không gian \(Oxyz\) cho ba điểm \(A(2;5;3),B(3;7;4),C(x;y;6)\). Giá trị của \(x,y\) để ba điểm \(A,B,C\) thẳng hàng là
A. x = 5;y = 11
B. x = - 5;y = 11
C. x = - 11;y = - 5
D. x = 11;y = 5
18/11/2021 2 Lượt xem
18/11/2021 1 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 619
- 0
- 40
-
85 người đang thi
- 665
- 13
- 40
-
54 người đang thi
- 573
- 3
- 30
-
47 người đang thi
- 553
- 3
- 30
-
89 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận