Câu hỏi: Tìm \(\sqrt[3]{i}\) trong trường số phức:

170 Lượt xem
30/08/2021
3.1 8 Đánh giá

A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)

B. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)

C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)

D. Các câu kia đều sai

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tính \(z = \frac{{1 + {i^{2007}}}}{{2 + i}}\)

A. \(\frac{2}{5} + \frac{{ - i}}{5}\)

B. \(\frac{-2}{5} + \frac{{ i}}{5}\)

C. \(\frac{1}{5} - \frac{{ i}}{5}\)

D. \(\frac{1}{5}- \frac{{3}}{5}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 2: Tìm argument φ của số phức \(z = (1 + i\sqrt 3 )(1 - i)\)

A. \(\varphi = \frac{\pi }{{12}}\)

B. \(\varphi = \frac{\pi }{{3}}\)

C. \(\varphi = \frac{7\pi }{{12}}\)

D. \(\varphi = \frac{\pi }{{4}}\)

Xem đáp án

30/08/2021 3 Lượt xem

Câu 3: Tìm argument φ của số phức \(z = \frac{{2 + i\sqrt {12} }}{{1 + i}}\)

A. \(\varphi = \frac{\pi }{4}\)

B. \(\varphi = \frac{\pi }{3}\)

C. \(\varphi = \frac{7\pi }{12}\)

D. \(\varphi = \frac{\pi }{12}\)

Xem đáp án

30/08/2021 2 Lượt xem

Xem đáp án

30/08/2021 1 Lượt xem

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Giải \({z^3} - i = 0\) trong trường số phức:

A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)

B. Các câu kia sai

C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)

D. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên