Câu hỏi: Tìm argument φ của số phức \(z = (1 + i\sqrt 3 )(1 - i)\)
A. \(\varphi = \frac{\pi }{{12}}\)
B. \(\varphi = \frac{\pi }{{3}}\)
C. \(\varphi = \frac{7\pi }{{12}}\)
D. \(\varphi = \frac{\pi }{{4}}\)
Câu 1: Cho \(z = \frac{{{{(1 + i\sqrt 3 )}^5}}}{{4 - 3i}}\) . Tìm module của z.
A. \(\frac{{16}}{5}\)
B. \(\frac{{32}}{5}\)
C. \(\frac{{32}}{25}\)
D. Ba câu kia sai
30/08/2021 1 Lượt xem
Câu 2: Giải phương trình \((2 + i)z = 1 - 3i\) trong C.
A. \(z = \frac{-1}{5} - \frac{{7i}}{5}\)
B. \(z = \frac{1}{5} +\frac{{7i}}{5}\)
C. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)
D. \(z = \frac{1}{5} - \frac{{7i}}{5}\)
30/08/2021 2 Lượt xem
Câu 3: Giải \({z^3} - i = 0\) trong trường số phức:
A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)
B. Các câu kia sai
C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)
D. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)
30/08/2021 2 Lượt xem
Câu 4: Cho số phức z có module bằng 5. Tìm module của số phức \(w = \frac{{z.{i^{2006}}}}{{\overline z }}\)
A. 1
B. 10030
C. 2010
D. 5
30/08/2021 2 Lượt xem
Câu 5: Tìm số nguyên dương n nhỏ nhất để \({( - 1 + i\sqrt 3 )^n}\)
A. n = 1
B. Không tồn tại n
C. n = 3
D. n = 6
30/08/2021 1 Lượt xem
Câu 6: Giải phương trình trong trường số phức \(\left( {1 + 2i} \right)z = 3 + i\)
A. \(\frac{1}{2} - \frac{i}{2}\)
B. \(−1 + i. \)
C. \(z = 1 − i\)
D. \(z = 1 + i\)
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.0K
- 66
- 25
-
39 người đang thi
- 565
- 18
- 25
-
63 người đang thi
- 475
- 15
- 25
-
64 người đang thi
- 402
- 10
- 25
-
23 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận