Câu hỏi: Tính \(z = \frac{{1 + {i^{2007}}}}{{2 + i}}\)

128 Lượt xem
30/08/2021
3.5 8 Đánh giá

A. \(\frac{2}{5} + \frac{{ - i}}{5}\)

B. \(\frac{-2}{5} + \frac{{ i}}{5}\)

C. \(\frac{1}{5} - \frac{{ i}}{5}\)

D. \(\frac{1}{5}- \frac{{3}}{5}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tập hợp tất cả các số phức \(\left| {z + 4i} \right| = \left| {z - 4} \right|\) trong mặt phẳng phức là:

A. Trục 0y

B. Đường thẳng y = 4x.

C. Đường thẳng x + y = 0

D. Đường tròn

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Biểu diễn các số phức dạng \(z = {e^{2 + iy}},y \in R\) lên mặt phẳng phức là:

A. Đường tròn bán kính 2

B. Đường tròn bán kính e2

C. Đường thẳng \(y = {e^2}x\)

D. Đường thẳng x = 2 + y

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Giải \({z^3} - i = 0\) trong trường số phức:

A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)

B. Các câu kia sai

C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)

D. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Tính \(z = \frac{{{{(1 - i)}^9}}}{{3 + i}}\)

A. \(\frac{{16}}{5} - \frac{{32i}}{5}\)

B. \(\frac{{8}}{5} - \frac{{32i}}{5}\)

C. \(\frac{{8}}{5} + \frac{{64i}}{5}\)

D. \(\frac{{16}}{5} + \frac{{32i}}{5}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Giải phương trình \((2 + i)z = 1 - 3i\) trong C.

A. \(z = \frac{-1}{5} - \frac{{7i}}{5}\)

B. \(z = \frac{1}{5} +\frac{{7i}}{5}\)

C. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)

D. \(z = \frac{1}{5} - \frac{{7i}}{5}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên