Câu hỏi: Giải \({z^3} - i = 0\) trong trường số phức:
A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)
B. Các câu kia sai
C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)
D. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)
Câu 1: Cho số phức z có module bằng 5. Tìm module của số phức \(w = \frac{{z.{i^{2006}}}}{{\overline z }}\)
A. 1
B. 10030
C. 2010
D. 5
30/08/2021 2 Lượt xem
Câu 2: Tập hợp tất cả các số phức \(\left| {z - 5} \right| = \left| {z + 5} \right|\) trong mặt phẳng phức là:
A. Đường y = x.
B. Trục 0y
C. Trục 0x
D. Các câu kia sai
30/08/2021 2 Lượt xem
Câu 3: Giải phương trình \((2 + i)z = 1 - 3i\) trong C.
A. \(z = \frac{-1}{5} - \frac{{7i}}{5}\)
B. \(z = \frac{1}{5} +\frac{{7i}}{5}\)
C. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)
D. \(z = \frac{1}{5} - \frac{{7i}}{5}\)
30/08/2021 2 Lượt xem
Câu 4: Tìm \(\sqrt { - 9} \) trong trường số phức
A. z1 = −3; z2 = 3i.
B. z1 = 3i
C. z1 = 3i; z2 = −3i.
D. Các câu kia sai
30/08/2021 1 Lượt xem
Câu 5: Tìm argument φ của số phức \(z = \frac{{{{(1 + i\sqrt 3 )}^{10}}}}{{ - 1 + i}}\)
A. \(\varphi = \frac{{ - \pi }}{{12}}\)
B. \(\varphi = \frac{{ \pi }}{{3}}\)
C. \(\varphi = \frac{{ 7 \pi }}{{12}}\)
D. \(\varphi = \frac{{ \pi }}{{12}}\)
30/08/2021 2 Lượt xem
Câu 6: Tính \(z = \frac{{2 + 3i}}{{1 + i}}\)
A. \(\frac{1}{2} + \frac{{3i}}{2}\)
B. \(\frac{5}{2} + \frac{{5i}}{2}\)
C. \(\frac{5}{2} - \frac{{i}}{2}\)
D. \(\frac{5}{2} + \frac{{i}}{2}\)
30/08/2021 4 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.0K
- 66
- 25
-
58 người đang thi
- 553
- 18
- 25
-
21 người đang thi
- 461
- 15
- 25
-
99 người đang thi
- 389
- 10
- 25
-
92 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận