Câu hỏi: Giải \({z^3} - i = 0\) trong trường số phức:

167 Lượt xem
30/08/2021
3.5 6 Đánh giá

A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)

B. Các câu kia sai

C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)

D. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tính \(z = \frac{{2 + 3i}}{{1 + i}}\)

A. \(\frac{1}{2} + \frac{{3i}}{2}\)

B. \(\frac{5}{2} + \frac{{5i}}{2}\)

C. \(\frac{5}{2} - \frac{{i}}{2}\)

D. \(\frac{5}{2} + \frac{{i}}{2}\)

Xem đáp án

30/08/2021 4 Lượt xem

Câu 2: Tìm argument φ của số phức \(z = {\textstyle{{1 + i\sqrt 3 } \over {1 + i}}}\)

A. \(\varphi = \frac{{ - \pi }}{{12}}\)

B. \(\varphi = \frac{{ \pi }}{{3}}\)

C. \(\varphi = \frac{{ - \pi }}{{4}}\)

D. \(\varphi = \frac{{7 \pi }}{{12}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Giải phương trình \((2 + i)z = {(1 - i)^2}\)  trong C

A. \(z = \frac{1}{5} - \frac{{7i}}{5}\)

B. \(z = \frac{1}{5} + \frac{{7i}}{5}\)

C. \(z = \frac{-2}{5} - \frac{{4i}}{5}\)

D. \(z = \frac{-2}{5}+ \frac{{4i}}{5}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 4: Giải phương trình \((2 + i)z = 1 - 3i\) trong C.

A. \(z = \frac{-1}{5} - \frac{{7i}}{5}\)

B. \(z = \frac{1}{5} +\frac{{7i}}{5}\)

C. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)

D. \(z = \frac{1}{5} - \frac{{7i}}{5}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Biểu diễn các số phức dạng \(z = {e^{2 + iy}},y \in R\) lên mặt phẳng phức là:

A. Đường tròn bán kính 2

B. Đường tròn bán kính e2

C. Đường thẳng \(y = {e^2}x\)

D. Đường thẳng x = 2 + y

Xem đáp án

30/08/2021 2 Lượt xem

Câu 6: Cho các số phức \(z = {e^{a + 2i}},a \in R\) . Biểu diễn những số đó lên mặt phẳng phức ta được:

A. Nửa đường thẳng 

B. Đường thẳng

C. Đường tròn bán kính e

D. Đường tròn bán kính e2

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên